Ę

# **STNASINT-E**

#### SYSTEM INTRODUCTION

Model No.: STNASINT-E

Version 1.2 PM/FL/ZR-7/99

**Training ASINT** 

E

# **SEMINAR START**

| CTION     | 1 |
|-----------|---|
|           |   |
| E3        | 2 |
|           |   |
| OVERVIEW4 | 3 |

#### **1 INTRODUCTION**

#### General Information

You have chosen to participate in a system introduction with B&R in order to learn about B&R hardware, programming and application possibilities.

In the next few days - for the duration of this seminar - you will be working together with your seminar leader.

Some of you will want to learn about controllers and their uses while others will have a greater interest in more advanced B&R controllers and programming.

We will do our best to provide you with the maximum of information in your area of interest.

The technical expertise of your seminar leader is not the only factor responsible for your personal success during this seminar.

Success depends on co-operation and interaction between the course members and the seminar leader, as well as the attitude and application of individual course members towards teamwork and the course in general.

Introduction - Seminar Leader

Please allow the seminar leader to introduce her/himself. Make notes if necessary.

#### Introduction - Course Members

You should get to know your colleagues as you will be working together as a group and also in smaller groups during the seminar (name, company, product, application area, current level of knowledge).

## 2 SCHEDULE

The time available during the seminar is a very important factor.

| Start:       |  |  |  |
|--------------|--|--|--|
|              |  |  |  |
|              |  |  |  |
| Lunch Break: |  |  |  |
|              |  |  |  |
| End:         |  |  |  |

We will taking short breaks at various intervals through out the seminar for tea and coffee and to give the smokers the chance to light up!

#### **3 SEMINAR OVERVIEW**

- Introducing B&R
- System Overview
- Hardware
- Programming System
- B&R2000
- Ladder Diagram
- Instruction List
- Structured Text
- Automation Basic
- Service Info
- Project Management

Ę

# **INTRODUCING B&R**

# **1 NOTES**





# SYSTEM OVERVIEW

| 1      | B&R        | GENERAL INFORMATION               |
|--------|------------|-----------------------------------|
| 2      | B&R        | PCC SYSTEM                        |
|        | 2.1        | Operating System                  |
|        | 2.2        | Programming Device                |
|        | 2.3        | Visualization                     |
|        | 2.4        | B&R Automation Net8               |
|        | 2.5        | B&R Positioning System9           |
| 3      | INTI       | ERNATIONAL LICENCES / STANDARDS11 |
|        | 3.1        | Licenses11                        |
|        | 3.2        | Standards12                       |
|        |            |                                   |
| 4      | PRO        | DUCTION, ENVIRONMENT, SAFETY13    |
| 4<br>5 | PRO<br>TER | DUCTION, ENVIRONMENT, SAFETY      |

#### **1 B&R GENERAL INFORMATION**



**B&R** is Your Worldwide Automation Partner.

In addition to the **control systems** MULTI and B&R 2000, the following automation products are also available.

PANELWARE for simple machine visualization.

IPC (**Industrial PCs**) for full Graphic Visualization and Data Collection. Machine visualization software up to **SoftPLC** 

Automation Net for Management, Control, and Field Bus Levels.

**B&R Positioning System** from individual axis to CNC applications.

#### 2 B&R PCC SYSTEM



#### B&R2003

B&R2005

B&R2010

The B&R 2000 PCC family is an Automation System that provides new levels of performance, operational safety and function. The B&R2003, B&R2005 and B&R2010 systems cover the entire range of user requirements from simple Logic Control up to complex remote automations systems.



The B&R **SlotPLC** integrates real time in an IPC system. The Dual Processor Architecture guaranties total industrial PC performance for visualization, and improves the operating safety of the PCC system.

The B&R **SoftPLC** enables flexible distribution of system resources between Windows NT and the B&R real time core.

Connection of inputs and outputs is created by expansions, field bus and remote I/O.

# B&R2000 PCC Systems



# 2.1 Operating System



Deterministic multitasking operating system allows timing to be set to an optimum level. Due to the modular construction of the operating system, these settings can be set precisely to match the application itself. AS and integrated error log book offer the user powerful diagnosis tools.

#### 2.2 Programming Device



Windows and DOS offer the user two platforms.

Both support various programming languages according to IEC 1131-3 and the symbolic variable declaration.

For control of the system, variable and system monitors offer varying debugging possibilities.

The included standard software is described thoroughly in ONLINE-help.

# 2.3 Visualization

**PANELWARE** is a modular operator panel with keypads, displays and controllers for small visualization systems. With its various components, it is possible to achieve up to 7 million panel variations. Customized panels are also available.



**IPC 2000:** An AT Compatible Industrial PC. Versions with FLASH disk or Hard disk. Versions with Flat panels, Monitor and PANELWARE keypad modules.

**IPC 5000:** Modular industrial PC. Pentium Processor. Operate with remote capable Flat displays and PANELWARE keypad modules. ISA and PCI Bus. The IPC 5600 is intended for use in 19" racks.



Industrial - PCs



#### 2.4 B&R Automation Net



With three levels - management, control and field bus it is possible to network the entire application.

The management level (Ethernet) serves a operational data and statistical handing center.

The control level (Profibus and NET2000) is responsible for process visualization and control tasks.

The field bus level (CAN bus, B&R remote I/O), controls the connection of sensors and actuators.

### 2.5 B&R Positioning System



The positioning functions are fully integrated into the system.

The servo or stepper motor control provides the user with a full range of possibilities from simple positioning to CNC positioning.

CAM Profiles can be used to set parameters for the most complex relationship between individual axis.

A modular servo amplifier concept allows perfect integration into the standard B&R 2000 product family.

High performance motors with high power density have been developed for extremely fast movements.

# B&R Positioning System



## **3 INTERNATIONAL LICENCES / STANDARDS**

B&R products and services meet all required standards. These include the international standards of organizations such as ISO, IEC and CENELEC, as well as national standards of organizations such as UL, CSA, FCC, VDE, ÖVE etc.

We give special consideration to the reliability of our products in industry. The requirements of the product standard IEC 61131-2 for electromagnetic immunity, for example, are exceeded.

### 3.1 Licenses

| Area               | Description                                                                                                                                                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USA and Canada     |                                                                                                                                                                                                                                                                             |
|                    | All important B&R products are tested and listed by Underwriters<br>Laboratories and are checked quarterly by a UL inspector. The quality<br>symbol is valid in the USA and Canada and makes it considerably easier<br>to license your machines and systems in these areas. |
| Europe             |                                                                                                                                                                                                                                                                             |
| CE                 | All harmonized EN standards for the valid guidelines are met.                                                                                                                                                                                                               |
| Russian Federation |                                                                                                                                                                                                                                                                             |
| P                  | B&R has a GOST certification for all products.                                                                                                                                                                                                                              |
| CH01               |                                                                                                                                                                                                                                                                             |
| Offshore           |                                                                                                                                                                                                                                                                             |
| Germanischer Lloyd | The compact controller and individual PANELWARE modules are certified by Germanischen Lloyd.                                                                                                                                                                                |
| U. Ka              |                                                                                                                                                                                                                                                                             |



The entire B&R SYSTEM 2005 is certified by Bureau Veritas.

## 3.2 Standards

Requirements determined by EU guidelines and past experience.

Hardware is put through the following **tests**:

| Name                                                  | Limiting Value                                                                                                                                        | Description                                                                                           |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Noise Immunity                                        | Noise Immunity                                                                                                                                        |                                                                                                       |  |  |  |
| IEC 61000-4-2<br>EN 61000-4-2                         | 15 kV Discharge<br>8 kV Contact Discharge                                                                                                             | ESD (electrostatic discharge)                                                                         |  |  |  |
| IEC 61000-4-3<br>EN 61000-4-3                         | 26 – 1000 MHz: 10V/m,<br>80% Amplitude Modulation 1kHz                                                                                                | HF irradiation                                                                                        |  |  |  |
| IEC 61000-4-4<br>EN 61000-4-4                         | Power Supply 4 kV<br>Digital I/O s (24V) 2 kV<br>Remaining Services 1 kV                                                                              | BURST<br>The defined B&R limiting values<br>are double that of the values<br>defined in the standard. |  |  |  |
| IEC 61000-4-5<br>EN 61000-4-5                         | 1 kV sym. / 2 kV asym.                                                                                                                                | SURGE                                                                                                 |  |  |  |
| IEC 61000-4-6<br>EN 61000-4-6                         | 0.15 - 80 MHz: 10 V, 80% AM                                                                                                                           | Power initiated HF- coupling<br>conducted disturbance, HF<br>inductance                               |  |  |  |
| Emitted Disturbance                                   |                                                                                                                                                       |                                                                                                       |  |  |  |
| EN 50081-2,<br>EN 55022                               | 150 - 500 kHz.: 66-56 dB(μV/m)<br>0,5 - 5 MHz.: 56 dB(μV/m)<br>5 - 20 MHz.: 60 dB(μV/m)<br>30 - 230 MHz.: 30 dB(μV/m)<br>230 - 1000 MHz.: 37 dB(μV/m) | Emission is measured at a distance of 30m.                                                            |  |  |  |
| Operating Temperature, Humidity, Vibration Resistance |                                                                                                                                                       |                                                                                                       |  |  |  |
| Operating Temperature                                 | 0 to 60 °C                                                                                                                                            |                                                                                                       |  |  |  |
| Humidity                                              | 5 to 95% (non-condensing)                                                                                                                             |                                                                                                       |  |  |  |
| Vibration Resistance                                  | 10 - 150 Hz: 1g                                                                                                                                       |                                                                                                       |  |  |  |

#### **4 PRODUCTION, ENVIRONMENT, SAFETY**

The Quality of our products and services has been a priority for many years and is of great importance to B&R. We achieve the **highest level** of quality for our customers.

Since 1993 the company has qualified for the international QM standard **ISO-9001** certificate.

**Quality control** in the production department covers the following areas. After installation all circuit boards are tested via a **completely automated SMD production in-circuit** test. After final assembly extensive **function tests** are carried out on the control level. These tests are followed by a "**Burn in**".

**Environmental awareness** is an issue important in every area of the company. It is our obligation to care for the environment and to ensure that only environmentally friendly means of manufacturing are used.

The **safety** of our workers is in the workplace is guaranteed and constantly improved through continued investment and assessment.

#### **5 TERMS AND DEFINITIONS**

#### Analog/Digital

Numerical representation of a physical value. The physical value is converted to a digital value by an A/D converter, according to the resolution.

- Binary Data, figures and status information that is made up of 0's or 1's (binary system = base 2 counting system).
- BOOL The binary display is also known as boolean display. 0.. FALSE, 1.. TRUE;
- Bit Smallest unit of information (binary 0 or 1)
- Byte Unit of information consisting of 8 Bits. Values represented either as:

| 2#0000_0000 | - | 2#1111_1111 | binary      |
|-------------|---|-------------|-------------|
| 0           | - | 255         | decimal     |
| 16#00       | - | 16#FF       | hexadecimal |

| ASCII    | American Standard code for Information Interchange<br>Standardized character set.                                                             |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address  | Identifies location in the memory, or I/O data point on the I/O bus.                                                                          |  |  |
| Variable | Defined memory space, I/O Addresses and internal memory.                                                                                      |  |  |
| Bus      | Method of communicating addresses, data and information. Links the CPU with the memory, interfaces, co-processors and I/O modules.            |  |  |
| CPU      | Central Processing unit; processes application programs. CPUs are available with a range of performance capabilities and additional functions |  |  |
| APM      | The application program is developed for the appropriate project and loaded into the application program memory.                              |  |  |

#### ROM Read Only Memory

- EPROM Read only Memory which can be erased by UV light (Erasable Programmable ROM).
- EEPROM Electrical Erasable Read Only Memory (Electric Erasable Programmable ROM).

#### Flash-PROM

Electrical Erasable Read Only Memory. However, due to it's construction only the whole chip can be erased.

RAM Random Access Memory. Used to store data while the program is being processed. Must be buffered by batteries.

#### Programming System

For programming, documenting and testing the required input, visualization and storage devices. A PC is normally the programming system, using the appropriate software (PG software).

Online All PCCs have an interface to connect to the programming device at their disposal. Using this interface programs can be loaded to the controller and program information can be read back.

#### Ladder diagram LAD

Programming language with graphical symbols as found in circuit diagrams. Can also be used in combination with functions plan and logic plan.

#### Instruction List

IL. Notation for formulation controller programs. This enables program statements to be arranged as a list.

#### High Level Language

Collective term for programming languages that allow program orientated formulation that can be run on any type of computer. E.g. C, Pascal, ST.

- C Programming language that was developed in connection with the UNIX operating system by D.Ritchie in the AT&T Laboratories.
- ANSI Abbreviation for: American National Standards Institute.
- ANSI C Standardized C

**Function Blocks** 

Transferal of efficient and complex functions into a "Black Box" which have fixed input and output parameters. A FBK can be called in LAD, IL or ST

Expansion System expansion external to the main base plate. Does not have its own CPU

- Remote Placing I/Os at a large distance (up to several kilometers). The transfer rate depends on the distance. Normally does not have its own CPU.
- Network Communication between two or more intelligent systems over a pre-defined connection path. You can differentiate between networks because of their physical structure, (two/four conductor cable, coaxial, fiber optic cable), their topology (ring, star, tree structure) and their protocol (language).

Well known networks are: Profibus, Ethernet, Arcnet, CAN, NET2000

Modular construction.

All B&R systems are supplied in a compact construction and can be made to individual customer specification. The advantages of this compact design is the wide ranging expansion possibilities and easy accessibility for servicing or changing the modules. This can also be applied to software which has been assembled from individual components.

Interface Enables communication transfer between the system and the outside world e.g. Printer, screen, PC, networks

#### Transfer rate

Serial interface download, also baud rate. Unit : 1 BAUD (bd.) = 1 Bit/Second.

#### **Control Panel**

Small visualization device with keypad. Normally only shows numbers, letters and simple graphics.

IPC Industrial PC for medium sized and large visualizations.

#### WIN95 / WIN98 / WIN NT (4.0 SR3)

Graphical user interface of the Microsoft company.

- UNIX Operating system developed in AT&T Laboratories. As it is written in C it is relatively easy to implement on different HW platforms.
- LINUX Operating system, made famous by its inventor Linus Torvalds (UNIX for PCs).
- OS/2 Operating system of IBM.

#### Source Code

Source Code is made up of program commands created by the programmer using a text editor and saved in file. This file contains the source code. The code is compiled and transferred to controller or PC and executed.

Source Short version of source code.

#### File / Document

Basic way of storing information on PCs. Documents such as programs are files. Different data types are assigned different display symbols.

#### Folder

A folder can contain files and other folders. Organize your work into folders to give an easier overview of what you have as you would do in your office or at home. Your directories are labelled as folders.

#### Directory / Path

Directory names or path names are used in text orientated operating systems instead of graphical symbols in order to find them easily.

#### **Directory Tree**

To give an overview display of directories, programs such as Windows Explorer have a directory tree display function.

#### Hard drive / Hard drive ID

Letters are used to identify the individual memory mediums (diskettes, hard disks, networks) for example A,B .. disk drives, C-Z .. hard disks, networks).

# **6 DISPLAY TYPES FOR NUMBERS**

When programming it is important to assign values to various variables, therefore various standard types have been defined.

#### Saving numbers:

| Name  | Bit Width | Value Range                  | Use          |
|-------|-----------|------------------------------|--------------|
| BOOL  | 1         | 0 1                          | digital I/Os |
| DINT  | 32        | -2 147 483 648 2 147 483 647 |              |
| INT   | 16        | -32768 32767                 | analog I/Os  |
| SINT  | 8         | -128 127                     |              |
| UDINT | 32        | 0 4 294 967 295              |              |
| UINT  | 16        | 0 65535                      |              |
| USINT | 8         | 0 255                        |              |
| REAL  | 32        | -3.4 E38 3.4 E38             |              |

Saving text and data formats:

| Name          | Width       | Value Range                     | Use              |
|---------------|-------------|---------------------------------|------------------|
| STRING        | 1 – xx Byte | 2 characters – 32767 characters | "Text"           |
| TIME          | 4 Byte      | 0 4 294 967 295 msec            | Time difference  |
| DATE_AND_TIME | 4 Byte      | Seconds since 1970              | Date calculation |

# HARDWARE

| 1 | SYS | ТЕМ B&R2003                           | 2  |
|---|-----|---------------------------------------|----|
|   | 1.1 | B&R2003 Main Controller               | 3  |
|   | 1.2 | B&R2003 Expansion                     | 10 |
|   | 1.3 | B&R2003 Network                       | 14 |
| 2 | SYS | TEM B&R2005                           | 15 |
|   | 2.1 | B&R2005 Main Controller               | 16 |
|   | 2.2 | B&R2005 Expansion                     | 23 |
|   | 2.3 | B&R2005 Networks                      | 24 |
| 3 | SYS | TEM B&R2010                           | 27 |
|   | 3.1 | B&R2010 Main Controller               |    |
|   | 3.2 | B&R2010 Expansion                     |    |
|   | 3.3 | B&R2010 Networks                      | 35 |
|   | 3.4 | Combining B&R2003 - B&R2005 - B&R2010 |    |
|   | 3.5 | Expansion                             |    |
|   | 3.6 | I/O Access                            | 42 |
|   |     |                                       |    |

#### 1 SYSTEM B&R2003



#### SYSTEM CONFIGURATION:

- B&R2003 Main Controller
- B&R2003 Expansion
  - CAN I/O
  - Remote I/O
- B&R2003 Network

#### 1.1 B&R2003 Main Controller

#### B&R2003 Module Rack

The system is provided to handle an I/O bus and the CP interface for systemcompatible modules.

| CP Interface<br>(optional) | CPU<br>PS | I/O<br>secure da<br>max. 8 | bus<br>ta transfer<br>Modules |
|----------------------------|-----------|----------------------------|-------------------------------|
| 0                          |           | 1                          | 2                             |

The module rack has a maximum of 10 module slots.

The module rack is available with room for 2, 3, 4, 5, 6, 8 and 10 module slots.

The module slot on the immediate right of the CPU has module address 1, the second module slot takes address 2 etc.

The **CP interface** for the system module can be installed optionally on the left of the CPU. The CP interface is equipped with spaces for 4 screw-in modules and is assigned module address 0.

A **Digital module** or an **Analog interface module** can be used in any module slot. Every analog interface module has spaces for 4 screw-in modules.

Analog interface modules can only be operated in module slots 1-4 on the B&R 2003 system.

If there are free places on the module rack, a module slot protection cover (AC010) should be installed in the first free module place.

Installation and detailed module information can be found in the **B&R2003 User's Manual.** 

B&R2003 Power Supply and CPU

| Power supply | DC Module:      | 18-30V<br>CPU 24V Supply                                                               |
|--------------|-----------------|----------------------------------------------------------------------------------------|
|              | AC Module:      | 85-264V; 47-63 Hz<br>CPU 100V-240V Supply                                              |
| Protection   | Primary side:   | <b>Fuse</b> protection<br>See catalog or HW manual for details                         |
|              | Secondary side: | Internal current limit control ( <b>short circuit</b> and <b>overload</b> protection). |

# The CPU is always positioned on the left of the module rack!

| CP Interface<br>(optional) | CPU<br>PS | I/O<br>secure dat<br>max. 8 i | bus<br>ta transfer<br>modules |
|----------------------------|-----------|-------------------------------|-------------------------------|
| 0                          |           | 1                             | 2                             |

#### B&R2003 CPU

Performance

This system is a highly user friendly, **real time, multitasking operating system** which is ideally supported by high performance processors and structured programming according to IEC1131-3. A real time clock is also available.

#### Communication

Interface service is carried out by the CPU.

- In coming data is stored in the buffer.
- Sent data is written to the buffer by the user.

This procedure ensures excellent interface operation.

There are two series interfaces at your disposal:

| PG interface   | (IF1): | RS232, modem capable (32 Byte FIFO) |
|----------------|--------|-------------------------------------|
| User interface | (IF2): | CAN                                 |

The interfaces are software compatible and can be operated as either online interfaces or data interfaces.

#### **Special Features**

Further interfaces can be installed in the first three places on the CP interface CPx74 (screw-in modules: RS232, RS485, RS422; CAN PROFIBUS DP Slave).

#### B&R2003 CPU Possibilities

- CPU with interface (4 slots for system modules)
- CPU without interface



#### B&R2003 Application Memory (APM)

The application memory is integrated in the CPU !

SRAM and FPROM are available as the storage mediums for the APM.

| SRAM                     |  |
|--------------------------|--|
| FIXRAM<br>(configurable) |  |
| FPROM                    |  |
| USER FLASH               |  |

- **Operating System** (update using **AS**)
- Program (tasks)
- **Documentation** (rebuild)
- Data (tables)
- Variable Information (name, type)

Power failure protection in the APM:

A project is downloaded to the APM-SRAM. The RAM memory is protected by a battery in the CPU.

To ensure **power failure protection**, the project must be burnt on the FPROM.

To ensure **Coldstart** protection, it is necessary to save the data module in FPROM or FIXRAM. (FIXRAM is an SRAM area, that is managed like FPROM).

During the project update in FPROM, the old task is made unrecognizable and the new one is then burned.

If the FPROM is full, the APM can be erased from the CPU by an AS utility.

#### B&R2003 Module

Digital input module

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of inputs
- Nominal input voltage
- Response time

Digital output modules

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of outputs
- Types: **Relay or transistor module**
- Switching voltage and switching current

Analog input module (supplied as screw-in modules)

The active A/D converter is shown on the analog interface. Each module slot is assigned a status LED (= Run-LED). The most important differentiating characteristics to note are:

- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

Temperature module

The active A/D converter is shown on the analog interface. Each module slot is assigned a status LED (= Run-LED).

The most important differentiating characteristics to note are:

- Number of channels
- Type: PT100, FeCuNi, NiCrNi, PtRhPt, PT1000, KTY
- Resolution:  $\frac{1}{10} \circ C$ ,  $\frac{1}{100} \circ C$

Analog output module

The active A/D converter is shown on the analog interface. Each module slot is assigned a status LED (= Run-LED).

The most important differentiating characteristics to note are:

- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

Other modules

• Digital mixed module, Interface module, Counter module

#### B&R2003 Terminal Block

#### Digital module

Terminal blocks are used for all digital modules.



Contact **10 electrical contacts** can be connected to the terminal block.

Efficiency The **separation between channel, supply and GND terminal blocks** permits an extremely efficient and clearly arranged connection scheme.

Ejection The terminal block enables **easy ejection** of the modules.

#### Analog modules and system modules

The connection is made according to the instructions on the analog screw-in module.

# 1.2 B&R2003 Expansion

The B&R2003 System can be expanded in two ways. With CAN and RIO.

# CAN

**EsR** 2003 ¢ ¢

● stores ● 00 0 0 EX473 CAN Ð 

<u>ی</u>





#### B&R2003 CAN I/O

The system layout can be expanded over a large distance and the inputs positioned where required by installing CAN I/O. The 'remote controller' concept is achieved by this method.

A maximum of 64 CAN stations can be connected.

The maximum bus length is 1000m.

The transmission speed is between **500kBaud** and **10kBaud** depending on the expansion distance.

The Master can be used with any processor that has a CAN interface: **B&R2003, B&R2005, B&R2010, PANELWARE, PROVIT** 

Every CAN I/O station consists of a CAN bus slave module (EX470/EX770). This module is used instead of a CPU and thus can be installed at the left end of the module rack.

Connection to the individual station is achieved by using **shielded three wire** cable.
## B&R2003 CAN I/O





#### B&R2003 Remote I/O

The system layout can be expanded over a large distance and the inputs positioned where required by installing remote I/O. The 'remote controller' concept is achieved by this method. Cabling requirements are minimized by the **2 wire bus**.

The number of remote stations depends on the connection:

- 31 Remote I/O slave station
- 121 with repeater

Maximum **segment length** is **1200m**. Maximum distance between the first and last station is **4800m** using **3 repeaters**.

The transmission speed is between **2MBaud** and **100KBaud** depending on the expansion of the remote system.

#### The remote I/O master is a B&R2005 or B&R2010 CPU.

Every remote I/O slave station consists of a **remote I/O slave: EX477/EX777**. This module is used instead of the CPU.

The connection of the individual stations is achieved using **shielded twisted pair cable.** 

# B&R2003 Remote I/O



#### 1.3 B&R2003 Network

The B&R2003 system can be connected with its network partners via a serial interface. A CAN, or Profibus DP network can also be used.

## 2 SYSTEM B&R2005



# SYSTEM CONFIGURATION:

- B&R2005 Main Controller
- B&R2005 Expansion
  - Expansion
  - Remote I/O
  - CAN I/O
- B&R2005 Network

# 2.1 B&R2005 Main Controller

B&R2005 Base plate module

The system is used together with the I/O bus.

| PS | CPU | System and I/O bus<br>secure data transfer. max. 11<br>Modules |
|----|-----|----------------------------------------------------------------|
|    | 1 2 | 3 4 5 6 7                                                      |

The **base plate module** is available with or without **battery provision** and has a maximum of **15 insert slots**. It can be supplied with **6**, **9**, **12** or **15** module slots.

A maximum of 4 expansions can be used to increase the number of data points.

The modules can be placed in any slot on the main base plate except for the power supply which has a fixed position. Each slot on the base plate has a predetermined module address. The first slot next to the power supply is given the module address 1, the second takes module address 2 etc. CPUs are normally assigned slot 1.

The dummy module (BM150) should be inserted in any free slots on the base plate.

For installation and detailed module information, please refer to the: **B&R SYSTEM 2000 HARDWARE USERS MANUAL** 

# B&R2005 Power Supply

| Power Supply | The output is 50 W |               |                       |                      |
|--------------|--------------------|---------------|-----------------------|----------------------|
|              | DC power supply:   | 24 V          | 18-30V                |                      |
|              | AC power supply:   | 120V<br>220 V | 92-133V;<br>187-265V; | 47-63 Hz<br>47-63 Hz |

Different types of power supply are available:

- Expansion slave
- Remote slave
- Expansion slots

| Protection | Primary side:   | <b>Fuse</b> protection.<br>see catalog or HW manual for details                                                                                                             |
|------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Secondary side: | Internal current limit control ( <b>short circuit</b> and <b>overload</b> protection). <b>Relay contact</b> is opened when error occurs. Secondary voltage is switched off. |

# The power supply has a fixed position on the base plate.

| PS | C]<br>m<br>base<br>or m<br>s | PU<br>ain<br>eplate<br>iodule<br>lot |   |   |   |   |   |   |   |    |    |    |
|----|------------------------------|--------------------------------------|---|---|---|---|---|---|---|----|----|----|
|    | 1                            | 2                                    | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 13 |

#### B&R2005 CPU

#### Performance

The high performance of the CPU is achieved by using a **processor with integrated RISC** (Reduced Instruction Set Computer). The system is highly user friendly incorporating a **real time and multitasking operating system**, which is ideally supported by high performance processors and structured programming according to IEC1131-3. A real time clock is also available.

#### Communication

Interface service is carried out by the RISC. Two series interfaces are available:

| User interface: | RS485/RS422/TTY      |
|-----------------|----------------------|
| PG interface:   | RS232, modem capable |

The interfaces are software compatible and can be operated as either online or data interfaces.

Slot The CPU can be operated from any position on the main base plate. However, it is standard procedure to install the CPU next to the power supply. It is not possible to install a CPU in an expansion unit.

| PS | CP | U | System and I/O bus<br>secure data transfer<br>max. 11 modules |   |   |   |   |  |  |  |
|----|----|---|---------------------------------------------------------------|---|---|---|---|--|--|--|
|    | 1  | 2 | 3                                                             | 4 | 5 | 6 | 7 |  |  |  |

#### Special types of Module

The following modules can carry out the same functions as the CPU. When installed on the rack next to the CPU, they act as a parallel processor (ref: Application memory onboard, buffering through the backplane).

- XP ... In the power supply expansion slot Interface RS232, CAN
- IF ... If this module is installed in slot number 1, it takes over the functionality of the CPU. Otherwise the module operates as a parallel processor. Interface: RS232, CAN
- IP ... As IF. Interface: RS232, CAN. In addition this processor offers faster I/O's.

# Possible combinations of PS, CPU and parallel processors

## XP152 as the CPU



# Standard Configuration







A maximum of two parallel processors are possible! CP260 a maximum of 4!

**Training ASINT** 

B&R2005 Application Memory

**SRAM** and **FPROM** are available as APM.

| SRAM                     |
|--------------------------|
| FIXRAM<br>(configurable) |
| FPROM                    |
| USER FLASH               |

- **Operating system** (update through AS)
- Program (tasks)
- **Documentation** (rebuild)
- **Data** (table)
- Variable Information (name, type)

Power failure protection on the APM:

The project is transferred to the APM RAM.

| Accu<br>Gold leaf capacitor (min. 10 min, for battery change |  |  |  |  |  |
|--------------------------------------------------------------|--|--|--|--|--|
| Battery                                                      |  |  |  |  |  |
| External buffer supply (optional use, AC240)                 |  |  |  |  |  |
|                                                              |  |  |  |  |  |

To ensure **power failure protection**, or to send prepared APM, the project must be burned on the APM PROM.

To ensure **COLDSTART** protection, it is necessary to save the data module in the FIXRAM (FIXRAM is a SRAM area that is managed like FPROM).

During the project update in FPROM, the old project is made unrecognizable and the new one is then burned. If the FPROM is full, the APM can be erased from the CPU by a PG utility.

## B&R2005 Module

Digital input module

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of inputs
- Nominal input voltage
- Response time, counter inputs

Digital output modules

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of outputs
- Types: Relay, transistor or triac module
- Switching voltage and switching current
- Maximum **potential difference**

Analog input module

The active A/D converter is shown by the status LED (Run LED). The most important differentiating characteristics to note are:

- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

#### Temperature module

The active A/D converter is shown by the status LED (Run-LED). The most important differentiating characteristics to note are:

- Number of channels
- Type: PT100 (3-, 4 conductors), FeCuNi (type-L, -J), NiCrNi (type-K)
- Resolution:  $\frac{1}{10} \circ C$ ,  $\frac{1}{100} \circ C$ ,  $\frac{1}{100} F$

## Analog output module

The active A/D converter is shown by the status LED (Run LED). The most important differentiating characteristics to note are:

- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

Other Modules

- Analog mixed module/digital mixed module
- Network module, Interface module, Positioning and CNC module, Dummy module

## B&R2005 Terminal Block

- Contact UP to **20 electrical contacts** can be connected to the terminal block. Screws and cage clamps are provided for this.
- Ejection The terminal block enables **easy ejection** of the modules.





# 2.2 B&R2005 Expansion

#### B&R2005 Expansion

Expansion is:

- Separating the I/O bus. The PCC can be ideally adjusted to suit the available space on the control cabinet.
- Expansion of the I/O bus. An additional 52 I/O modules can be operated from a maximum of 4 expansion stations.

The expansion master serves the **CPU via an integrated expansions master** or the **EX350 module**.

The **power supply** is served by an **expansions slave**. The **connection cable** between master and slave is available in **1m** or **2m** lengths.



## B&R2005 Remote I/O

The system layout can be expanded over a large distance and the inputs positioned where required by installing a remote I/O. The remote controller concept is achieved by this method. Cabling requirements are reduced by the 2 wire bus.

The number of remote stations depends on the connection:

- 31 remote I/O slave stations
- 121 with repeater

## Maximum segment length is 1200m.

Maximum distance between the first and last station is **4800m** using **3** repeaters.

The transmission speed is between **2MBaud** and **100KBaud** depending on the expansion of the remote system.

The **remote I/O master is a system module**, that in combination with the I/O module is installed on the main base plate.

Every remote I/O slave station comprises of a **power supply and remote I/O slave**.

The connection of the individual stations is achieved using shielded twisted pair cable.

#### B&R2005 with CAN I/O

The B&R2005 interface module with CAN interface can be connected with a B&R2003 CAN I/O.

For detailed information see B&R2003 Hardware manual.

## 2.3 B&R2005 Networks

The B&R2005 can be connected to many different standard networks by installing a network module.

Programming is also possible via networks (PROFIBUS, CAN).

# B&R2005 Expansion and Remote I/O



Up to 31 Remote Slave Stations with Repeater 121

## B&R2005 Possibilities



## **3 SYSTEM B&R2010**



## SYSTEM CONFIGURATION:

- B&R2010 Main Controller
- B&R2010 Expansion
  - Expansion
  - Remote I/O
  - CAN I/O
- B&R2010 Network

# 3.1 B&R2010 Main Controller

## B&R2010 Base Plate Module

The system controls a separate system and I/O bus.

| Sy<br>max | v <b>ste</b> i<br>k. 8 | m bu<br>Mod | <b>1s</b><br>lule | CPU |   | System and I/O bus<br>secure data control<br>max. 20 Module/Rack |   |   |   |   |   |  |  |
|-----------|------------------------|-------------|-------------------|-----|---|------------------------------------------------------------------|---|---|---|---|---|--|--|
| 4         | 3                      | 2           | 1                 |     | 1 | 2                                                                | 3 | 4 | 5 | 6 | 7 |  |  |

An I/O bus segment can comprise of up to a maximum of 20 modules.

An I/O bus can be expanded with a maximum of 99 modules.

The module slot on the immediate right of the CPU is assigned module address 1, the second slot is given module address 2, etc. Every I/O module address is visible to the user on a two character status display.

System and I/O buses are of modular construction.

The length is dependent on the number of modules installed on the main base plate.

The system and I/O buses are both terminated on the **main base plate** with a **bus termination connector**.

| System Bus: | <ul><li>2 slot</li><li>4 slot with bus termination connector</li></ul>                                                                                                           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU:        | with system bus connector                                                                                                                                                        |
| I/O-Bus:    | <ol> <li>1 slot with or without bus termination connector</li> <li>4 slot without bus termination connector</li> <li>1 slot for expansions slave and remote I/O slave</li> </ol> |

The dummy module (BM100) should be inserted in any free slots on the base plate.

For installation and detailed module information please refer to the: **B&R SYSTEM 2000 HARDWARE USERS MANUAL** 

#### B&R2010 Power Supply

| Power Supply | The output is 100 | Watts                                                                                                                                                                                                         |  |  |  |  |  |
|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|              | DC power supply:  | 18-30V                                                                                                                                                                                                        |  |  |  |  |  |
|              | AC power supply:  | 90-270V; 47-63 Hz;                                                                                                                                                                                            |  |  |  |  |  |
| Protection   | Primary side:     | <b>Fuse</b> protection.<br>See the catalog or HW manual for more details.                                                                                                                                     |  |  |  |  |  |
|              | Secondary side:   | Internal current limit control ( <b>short circuit</b> and <b>overload protection</b> ). OL Led is lit when error occurs. <b>Relay contact</b> is opened when error occurs. Secondary voltage is switched off. |  |  |  |  |  |

Slot

Power supply module is only inserted on the I/O bus The power supply should only be inserted according to the power demand requirements. The I/O bus power supply slots are freely available and should be distributed across the complete bus.

| System<br>Bus | CPU<br>on main base<br>plate or<br>module slot |   |   |   | P<br>S |   |   |   |   |   | P<br>S |
|---------------|------------------------------------------------|---|---|---|--------|---|---|---|---|---|--------|
|               |                                                | 1 | 2 | 3 | 4      | 5 | 6 | 7 | 8 | 9 | 10     |

Special features

**Decentralized supply concept**. Each module provides its own voltage and can be inserted or removed even when the **power supply** is on (exceptions: CPU, APM, system module).

**Supply redundancy** is reached when you use twice as many power supplies than are required.

Using the toggle switch on the power supply (PS740) enables the secondary supply (generated 24V DC bus supply) to be switched:

- forwards to the terminal block or
- backwards to the I/O bus.

#### B&R2010 CPU

#### Performance

The high performance of the CPU is achieved by using a **processor with integrated RISC**, and by assigning tasks to more processors. The system is highly user friendly incorporating a **real time and multitasking operating system** which are ideally suited to the high performance processors and structured programming according to IEC1131-3. A real time clock is available.

#### Communication

Interface service is carried out by the RISC.

- Received data is stored in the buffer.
- Sent data is written to the buffer by the user.

This procedure offers excellent interface service.

Three series interfaces are at your disposal: (see catalog)

- PG interface (IF1): RS232, modem capable
- User interface (IF3): RS485, RS422 or CAN (depending on CPU type)
- User interface (IF2): RS232

The interfaces are software compatible and can be operated as either online interfaces or data interfaces.

#### The CPU is mounted on its own CPU base plate module.

| System bus     | CPU | System and I/O bus   |
|----------------|-----|----------------------|
| max. 8 modules |     | secure data transfer |
|                |     | max. 99 Modules      |
|                |     |                      |

## B&R2010 Application memory

**SRAM** and **FPROM** are available as APM.

| SRAM                     |  |
|--------------------------|--|
| FIXRAM<br>(configurable) |  |
| FPROM                    |  |
| USER FLASH               |  |

- **Operating system** (update via AS)
- Program (tasks)
- **Documentation** (rebuild)
- Data (Tables)
- Variable Information (name, type)

Power failure protection in the APM:

The project is downloaded to the APM SRAM. RAM memory protection is achieved by:

| CPU: | Battery (see catalog)                                 |
|------|-------------------------------------------------------|
|      | Gold leaf capacitor (min. 10 min, for battery change) |

APM: Battery (see catalog)

To ensure **power failure protection**, or to use the prepared APM, the project must be burnt on the APM PROM.

To ensure **COLDSTART protection**, it is necessary to save the data module in the FIXRAM (FIXRAM is an SRAM area, that is managed like FPROM).

During the update in FPROM the old project is made unrecognizable and the new one is then burned.

If the FPROM is full, the APM can be erased from the CPU using an AS utility.

#### B&R2010 Module

**Digital Input** 

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of inputs
- Nominal input voltage
- Response time
- Specific types e.g. interrupt operation

Digital output modules

The status of the digital input is shown by the status LEDs. The most important differentiating characteristics to note are:

- Number of outputs
- Types: Relay or transistor module
- Switching voltage and switching current
- Maximum potential difference

#### Analog input module

The active A/D converter is shown by the status LED (Run LED). The most important differentiating characteristics to note are:

- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

#### Temperature module

The active A/D converter is shown by the status LED (Run LED). The most important differentiating characteristics to note are:

- Number of channels
- Type: **PT100** (3, 4 conductors), **FeCuNi** (type L)
- Resolution:  $\frac{1}{10} \circ C$ ,  $\frac{1}{100} \circ C$

Analog output module

The active A/D converter is shown by the status LED (Run LED). The most important differentiating characteristics to note are:

- Number of channels
- Type: current or voltage modules (unipolar or bipolar)
- Resolution: 12 Bit

Other modules

- Mixed module, digital and analog
- Multi processor, network module, interface processor
- Multi-function module, drum sequencer, positioning module
- Dummy module

#### B&R2010 Terminal Block

- Contact Up to **40 electrical contacts** can be connected to the terminal block. The cable bunch can be fixed directly on the terminal block using a **cable tie**.
- Ejection The terminal block enables **easy ejection** of the module and which functions as a locking lever at the same time.
- Protection The terminal block has six **code switches** that prevent the terminal being exchanged. An insecurely installed terminal block is indicated by the **status LED** at the top of the module. This status can also be **verified using the program**.



## 3.2 B&R2010 Expansion

B&R2010 Expansion

Expansion is:

- Separating the I/O bus. The PCC can be ideally adjusted to suit the space available in the control cabinet.
- Expansion of the I/O bus. An I/O bus segment (expansion station,..) can handle a maximum of 20 modules. An I/O bus can operate a maximum of 99 modules which corresponds to a bus length of 4m.

The expansion master used is the I/O bus module expansion master.

The expansion slave used is the I/O bus module expansion slave. The expansion slave is the first module to be installed on it's own base plate.

The **connection cable** between master and slave is available in **1m** and **2m** lengths.



Up to 9 Expansion stations

## B&R2010 Remote I/O

The system layout can be expanded over a large distance and the inputs positioned where required by installing remote I/O. The 'remote controller' concept is achieved by this method. Cabling requirements are reduced by the 2 wire bus.

The number of remote stations depends on the connection:

- 31 remote I/O slave stations
- 121 with repeater

## Maximum segment length is 1200m.

Maximum distance between the first and last station is **4800m using 3** repeaters.

The transmission speed is between **2MBaud** and **100KBaud** depending on the expansion of the remote system.

The **remote I/O master is a system module**, that is installed in the system bus slot of the main base plate.

Every remote I/O slave station comprises of a **remote I/O slave** that is installed in the first expansion slot on the main base plate.

The connection of the individual stations is achieved using shielded twisted pair cable.

#### B&R2010 with CAN I/O

The B&R2010 interface module with CAN interface can be connected with a B&R2003 CAN I/O.

For detailed information see B&R2003 Hardware Manual.

## 3.3 B&R2010 Networks

The B&R2010 can be connected to many different standard networks by installing a network module.

Programming is also possible via networks (PROFIBUS, CAN).

# B&R2010 Expansion and Remote I/O



# B&R2010 Possible Expansions



# 3.4 Combining B&R2003 - B&R2005 - B&R2010

The PCC systems B&R2003, B&R2005 and B&R2010 can be directly connected.

| Expansion<br>possibilities | Master                                                                         | Slave                         | max. number of<br>Slave stations | Expansion          |
|----------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------------------------|--------------------|
| Expansion                  | B&R2005<br>B&R2010<br>IPC with<br>SOFT PLC                                     | B&R2005<br>B&R2010            | 4 (B&R2005)<br>9 (B&R2010)       | 2m                 |
| Remote I/O                 | B&R2005<br>B&R2010<br>IPC<br>SLOT PLC<br>SOFT PLC                              | B&R2003<br>B&R2005<br>B&R2010 | 31 /<br>121                      | 1200 m /<br>4800 m |
| CAN I/O                    | B&R2003<br>B&R2005<br>B&R2010<br>Panelware<br>IPC with<br>SLOT PLC<br>SOFT PLC | B&R2003                       | 63                               | 1000m              |

# Advantage of combining B&R2000-PCCs

Combining B&R2000 PCCs means that only standard hardware needs to be used on the main unit, bus expansion, remote station and CAN station, which considerably reduces **HW costs.** This means that the **optimum price/performance** relationship can be achieved for every application.

# 3.5 Expansion

Coupling a B&R2005 and a B&R2010 to a local I/O bus by using expansion modules.



Coupling a B&R2010 and a B&R2005 to a local I/O bus by using expansion modules.



# Remote I/O

# Coupling a B&R2005 and B&R2003 to a B&R2010 CPU



# Coupling a B&R2010 and B&R2003 to a B&R2005 CPU



# CAN I/O

CAN master stations (B&R2003, B&R2005, B&R2010, SLOT PLC or SOFT PLC) read/write on a B&R2003 CAN I/O station



#### 3.6 I/O Access





Fig. 4.1: Program in Automation Studio

# **PROGRAMMING SYSTEM**

| 1 | B&R | AUTOMATION STUDIO                        |
|---|-----|------------------------------------------|
| 2 | GEN | ERAL INFORMATION                         |
| 3 | SET | TING UP THE COMPUTER                     |
|   | 3.1 | Installation5                            |
| 4 | STA | RTING AUTOMATION STUDIO7                 |
| 5 | OPE | RATION8                                  |
|   | 5.1 | Screen Layout                            |
| 6 | PRO | JECT ORGANIZATION11                      |
| 7 | PRO | GRAM CONSTRUCTION12                      |
|   | 7.1 | Explanation of the programming method:14 |
|   | 7.2 | Creating a new project:                  |
|   | 7.3 | System Monitor:25                        |
|   | 7.4 | Summary Creating a Project               |
|   | 7.5 | Defining Networks                        |
|   | 7.6 | Summary Program Toolbar, LADToolbar      |

## **1 B&R AUTOMATION STUDIO**



# **2** GENERAL INFORMATION



Easy to operate programming software

- Windows Look and Feel
- Mouse and keyboard operation
- Operator prompting
- Context sensitive help system
- Project and system management integrated in the programming system
- Software structuring via hardware

#### Programming Hardware

- Possible in Win95, Win98 and WinNT 4.0 (starting from SR3)
- No hardware protection (dongle)

Versatile Online-connection

- Serial interface (RS232)
- Modem (for service cost savings)
- Network

Programming according to STANDARD (IEC1131-3)

- Multi language capabilities (LAD, ST, IL, SFC)
- B&R Bonus Pack (ANSI C, B&R Automation Basic)
- Initialization sub-program (INIT-SP) possible for every task
- Function block (Standard libraries)
- Symbolic variable declaration

Simple testing facilities

- Project Monitor
- LAD Monitor
- PV Monitor (Watch)
  - Force operation
  - Archive Mode
- Tracer (traces variables on the PCC)
- Line Coverage (program flow display)
- Source Level Debugger
- Profiler (DOS)

## Versatile Documentation

- Project printing
- ASCII Import and Export

## Overview Automation Studio

A PC with a Pentium Processor (or compatible) is required. Minimum requirements are: 16 MB main memory, ~80 MB hard disk (full installation), SVGA resolution (800 x 600). A free serial RS232 (COMx) interface is required for online connection (COMx).

#### Operation

Programming can be carried out with either a mouse or keyboard. The user can choose between menu bars, Pull-down menus, Pop-up menus and dialog boxes. A user friendly context sensitive help system is available.

## **3 SETTING UP THE COMPUTER**

#### 3.1 Installation

Automation Studio (AS) is provided exclusively on CD format.

# If the Setup program does not start automatically, refer to the CD ROM folder.

#### **Start Setup:**

Start the set-up program. The rest of the set-up process is menu driven.

| 🛃 E:\                        |                      |            |            |                 | zip 🔔       | ٦×                   |
|------------------------------|----------------------|------------|------------|-----------------|-------------|----------------------|
| <u>D</u> atei <u>B</u> earbe | iten <u>A</u> nsicht | 2          |            |                 |             |                      |
| 段 B&R Auton                  | nat (E:)             | - 🗈        | 1 <b>1</b> |                 |             | <u>n</u><br><u>n</u> |
| inst32i.ex                   | _isdel.exe           | _setup.dll | _setup.lib | .Z<br>Brsetup.z | Clp6015.tmp |                      |
| .Z<br>Data.z                 | Setup.bmp            | Setup.exe  | Setup.ini  | Setup.ins       | Setup.pkg   |                      |
| l<br>12 Objekt(e)            | 2                    | 22,5 MB    |            | 2               |             |                      |

Fig. 5.1: Folder Setup CD

#### **Providing User Information:**

It is imperative that the correct information is given otherwise the installation process cannot continue.

| User Information        |                           | X                                                                                          |
|-------------------------|---------------------------|--------------------------------------------------------------------------------------------|
|                         | Type your n<br>company yo | ame below. You must also type the name of the<br>u work for and the product serial number. |
|                         | N <u>a</u> me:            | B&R                                                                                        |
|                         | <u>C</u> ompany:          | B+R Eggelsberg                                                                             |
| <b>BR<sup>III</sup></b> | <u>S</u> erial:           | EA4000]                                                                                    |
| Antomation Statio       |                           |                                                                                            |
|                         |                           | < Back Mext > Cancel                                                                       |

Fig. 5.2: User information
#### **Final settings:**

Occasionally extra dialog boxes may appear that have not been described in this section.

When all information has been correctly entered, the installation process is started by clicking on "Next". This may take a few minutes.



Fig. 5.3: Final dialog box

#### **4** STARTING AUTOMATION STUDIO

During installation a program short cut is added to the start-up menu.

AS (Automation Studio) can now be activated via the start menu.



| Fig. 5. | 4: C | alling | up | the | start | menu |
|---------|------|--------|----|-----|-------|------|
|---------|------|--------|----|-----|-------|------|



Fig. 5.5: Start up screen

#### **5 OPERATION**

The functions and elements of the windows correspond to the Microsoft window user guidelines.

Additional information is provided through context sensitive online help which can be found by pressing  $\langle F1 \rangle$ .

#### а h B&R Automation St \_ 🗆 X Hie Edit View Insert Open Project Object Tools Window ? New Project. Ctrl+N -XEE E 2 & 1 & 0 0 ? C Open Project Ctri+O 🗏 lest\_2.GDM [Hardware configuration \_ 🗆 🗙 Close Close P<u>r</u>oject Slot Software Log book Description l no. test\_2 Chi+S Module name <u>S</u>ave Ė-∰ 2005 **B**P0 Save All 3CP260.60-1 Ρ - 🎒 🐞 System Þ Page setup sysconf V 2.00 🍵 3CP260.60-1 Print Chil+P 1&2 standard V 1.00 🐌 3IF621.9 1.1 Export [ 1.2 Impor ٩. . 3DI475.6 3 龍礼 3DO480.6 4 +c:\projects\...\test\_2.GDM 3AI 375.6 5 2 c:\projects\...\test\_1.GDM 乱 340/350.6 6 <u>3</u> C:\projects\...\syein.GDM 3DM455.60-1 7 4 c:\temp\test.pgp\test.GDM 3EX150.60-1 8 醶 E<u>x</u>it 9 × 4 **\_** Output Debug COM1 CP260 V2.00 RUN Opens an existing project

#### 5.1 Screen Layout

е

f

i

Fig. 5.6: Screen construction

- a .. Title bar Program Name, Symbol size, Maximize, Close.
- b ... Menu bar Main menu bar giving access to other menus.
- c .. Pull Down Menu Different functions of the main menu. d
  - Enabling quick selection of various commands. .. Function buttons
  - .. Application window Window containing hardware and software configurations.
  - .. Hardware config. Window for the Hardware configuration.
- g .. Software config. Window containing the program, system functions...
- h .. Closer For closing windows.
  - .. Message window Displays messages concerning Compiler and Debugger.
- k .. Status Line Displays CPU type, Controller system, Connection status

╞

It is possible open up to **20 windows** simultaneously. This enables the user to edit and monitor programming, read the context sensitive help menus and move text between windows etc, at the same time.

Opening a Window

Double-clicking on a icon will open the chosen Editor.

#### Cursor Movement

Both cursor keys and the mouse can be used to move the cursor position:

| <pgup></pgup>               | Page up           | <home></home> | Cursor to start of the line |
|-----------------------------|-------------------|---------------|-----------------------------|
| <pgdown></pgdown>           | Page down         | <end></end>   | Cursor to end of the line   |
| <ctrl>+<home></home></ctrl> | Beginning of file |               |                             |
| <ctrl>+<end></end></ctrl>   | End of file       |               |                             |

Editor functions

| <ins></ins>                       | Insert character, Insert Object (depending on Editor) |                                                 |  |  |  |  |
|-----------------------------------|-------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| <bksp></bksp>                     | Delete previous character                             |                                                 |  |  |  |  |
| <del></del>                       | Delete character, Delete Object                       |                                                 |  |  |  |  |
| <enter></enter>                   | Start of line:<br>End of line:                        | Shift current line down<br>Shift next line down |  |  |  |  |
| <shift>+<cursor></cursor></shift> | Mark a block                                          |                                                 |  |  |  |  |
| <ctrl>+<c></c></ctrl>             | Copy a block                                          |                                                 |  |  |  |  |
| <ctrl>+<x></x></ctrl>             | Cut a block                                           |                                                 |  |  |  |  |
| <ctrl>+<v></v></ctrl>             | Insert block                                          |                                                 |  |  |  |  |

#### Switching Windows

It is possible to switch between open windows.

| < <b>Ctrl&gt;+<f6></f6></b><br>or<br>< <b>Ctrl&gt;+<tab></tab></b> | To next window                                                                       |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Mouse click                                                        | In the desired window                                                                |
| Menu<br>"Window"                                                   | Choose from menu listed Windows.                                                     |
| <f6></f6>                                                          | from hardware tree to right page (SW tree)<br>from cyclic program section to INIT SP |

The chosen window is activated and positioned in the foreground.

#### Window adjustment

Mouse: Select one of the **edges** of the window with the **left mouse button**, hold button down and adjust it to the **required size**.

Select the title bar of the window with the **left mouse button**, hold button down and **move window to position required**.

Keyboard <Alt>+<Space> Opens the pop-up menu of the main window.

<Alt>+<-> Opens the pop-up menu of the sub window

#### **Closing Windows**

- Mouse: Clicking on Close (top right corner of the window) will close the application. If there is data remaining unsaved the user will be asked whether it should be saved or not. The window will then be closed.
- Keyboard <**Alt>+**<**F4>** Closes the program
  - <**Ctrl>+<F4>** Closes the current sub window

#### **6 PROJECT ORGANIZATION**

A project contains all the information about a system/machine; this means all program modules and data banks including project management information.

Any number of projects can be organized on the computer. Saving or making backups is very easy. Programs or program parts can switched between projects with ease.

#### Project organization menu

For creating or selecting projects.



### **File:** New Project

| le ⊻iew <u>T</u> ools <u>?</u>                                                                             |            |
|------------------------------------------------------------------------------------------------------------|------------|
| New Project                                                                                                | Ctrl+N Set |
| <u>Open Project</u><br><u>Close</u><br>Close Project                                                       | Ctrl+0     |
|                                                                                                            | Ctrl+S     |
| 1 C:\projects\\syein.GDM<br>2 C:\TEMP\\AS\nb2.pgp\nb2.GDM<br>3 e:\tmp\\testat.GDM<br>4 e:\tmp\\testabs.GDM |            |
| Exit                                                                                                       |            |

Fig. 5.7: File: New Project

#### **File: Close Project:**

Closes an open project. "New Project" opens a new project.



Fig. 5.8: File: Close Project

#### 7 PROGRAM CONSTRUCTION

Constructing a program which runs successfully is made easy by the organization of the programming software.

On the following pages we will show you how to create a ladder diagram.

The following points regarding programming in B&R Automation Studio will be covered:

- Creating a new project
- Linking and assigning of the used variables
- Programming using Ladder Diagrams
- Downloading the program to the controller
- Testing the program with the LAD monitor
- Testing the program with the process variable monitor

Example: Converting a circuit diagram into a LAD.



Try to solve the problem above with the help of the information on the following pages of the training manual!

Project name:proj\_001LAD name:l\_logic1

In all examples, variables will be shown as follows.

| Name    | Туре | Scope  | Attribute | Value      | Remark                |
|---------|------|--------|-----------|------------|-----------------------|
| Key_1   | BOOL | global | IP5.0.3.1 |            | digital IN channel 1  |
| Relay_1 | BOOL | global | QP5.0.4.1 | * remanent | digital OUT channel 1 |

INFO:

digital IN = digital INPUT digital OUT = digital OUTPUT

#### 7.1 Explanation of the programming method:

INFO: During this section the following notations for the control explanation will be used.



Fig.: 5.9: Explanation of the programming method

Toolbar Symbol and the corresponding menu:

Function Key:<F1> + DescriptionOther keys:<Enter>,<br/><Cursor>, ..Confirm in dialog box: [Next], [OK], ...

\_\_\_\_\_

Text for input: "l\_logic1"

Example: Call up menu **D** File: Nev

🗋 File: New Project

Menu call up with the keyboard

<Alt> + F for File then n or N for New Project

#### 7.2 Creating a new project:

Automation Studio is a hardware orientated Programming system. The objects ease organization of the project (system, machine). All objects are then allocated to the project through the structured organization support.

#### **Tools: Options:**

Before we begin the programming, the connection should be checked. The online interface COM1 or COM2 must be correctly fitted to ensure hardware configuration from the controller can be down loaded.



#### Fig. 5.10: Tools: Options

| Options                         | ×               |
|---------------------------------|-----------------|
| Online                          |                 |
| ,                               |                 |
| Device :                        |                 |
| SERIAL                          | <u>D</u> efault |
|                                 |                 |
| Device parameters :             |                 |
| /IF=COM2 /BD=57600 /PA=2 /IT=14 |                 |
|                                 |                 |

Fig. 5.11: Parameter string

In this Dialog box only the parameter **/IF=COM2** is to be set to the corresponding COM.

## D File: New Project:

Create the new training project. The "New Project Wizard" will help you along the way.

Project name:proj\_001Path:c:\projects

#### **Upload from Target**

When creating a new project the project data must be entered, as shown in the following diagram Activate the option "**Upload hardware from target**"!!

| 🕅 B          | &R Ai    | Itomatio      | ation Studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ 🗆 🗙 |
|--------------|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>F</u> ile | ⊻iew     | <u>T</u> ools | ls <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|              | 2        | 80            | ] X B B   ∽ ∼ X B   C d ⊗ B   Q   B Ø Ø   <b>?</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | j.    |
|              |          |               | New Project Wizard       Image: Comparison of the comparison o |       |
| For He       | elp, pre | ess F1        | COM2 OFFLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NUM 7 |

Fig. 5.12: New Project Wizard

[Next]: Settings shown are confirmed with [Next] until the last dialog is reached.

[Finish]: This button closes the creation of the new pro

| New Project Wizard |                                                           | ? ×                             |
|--------------------|-----------------------------------------------------------|---------------------------------|
|                    | Location of the new project:<br>c:\projects\proj_001.pgp\ | A                               |
|                    | CPU module:<br>3CP260.60-1                                | Power supply module:<br>unknown |
|                    | Name of the target:                                       | Name of the CPU:                |
|                    |                                                           |                                 |
| 245 <b>5778</b>    | 🗖 Launch Insert Object Wiz                                | ard                             |
|                    | < <u>B</u> ack                                            | <u>Finish</u> Cancel            |

Fig. 5.13: New Project Wizard (Finish)

#### **Automation Desktop**

Figure 5.14 shows the Automation Desktop (controlling system of AS).



Fig. 5.14: Automation Desktop

#### Hardware Configuration:

On the left (Hardware Configuration) individual modules can be selected and inserted. The right side adjusts itself automatically.

| B&R Automation Studio - [pr           | oj_001.         | GDM [Project]]       | 2           |               |                     | ] × |
|---------------------------------------|-----------------|----------------------|-------------|---------------|---------------------|-----|
| 1 File Fait Alew Tuzert The           | n <u>F</u> roje | ct Ublect Tools Wind | DW <u>r</u> |               |                     | 신스  |
| j 🗅 🚅 🖬 🎒   X 🖻 🖻                     | K⊃ €            | *   X 🗳   Č 🗹 🕸      | \$ 🗐 💊      | 🍋 🤍 💓 🦹       |                     |     |
| Model no.                             | Slot            | 1/0 Description      |             |               |                     |     |
| □ So proi_001                         |                 | Name                 | Data Type   | PV Name       | Remark              |     |
| E-75 2005                             | BPO             | digital input 01     | BOOL        |               | 1ms switching delay | 1   |
| Ⅰ ⊢♥                                  | P               | digital input 02     | BOOL        |               | 1ms switching delay |     |
| ⊢≬                                    | P               | digital input 03     | BOOL        |               | 1ms switching delay |     |
| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | 1 & 2           | digital input 04     | BOOL        |               | 1ms switching delay |     |
| ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ | 1.1             |                      |             |               |                     |     |
|                                       | 12              | digital input 05     | BOOL        |               | 1ms switching delay |     |
| AL 201476 6                           | 2               | digital input 06     | BOOL        |               | 1ms switching delay |     |
| 200470.6                              |                 | digital input 07     | BOOL        |               | 1ms switching delay |     |
| 300473.6                              | 4               | digital input 08     | BOOL        |               | 1ms switching delay |     |
| ⊢ <mark>₹,</mark> 3АU350.6            | 5               |                      |             |               |                     |     |
| - 🛃 3AI350.6                          | 6               | digital input 09     | BOOL        |               | 1ms switching delay |     |
| <b>− 🛼</b> 3DM476.6                   | 7               | digital input 10     | BOOL        |               | 1ms switching delay |     |
| 3EX150.60-1                           | 8               | digital input 11     | BOOL        |               | 1ms switching delay |     |
| - 3NW150.60-1                         | 9               | digital input 12     | BOOL        |               | 1ms switching delay |     |
|                                       | 10              |                      |             |               |                     |     |
|                                       | · " [           | digital input 13     | BOOL        |               | 1ms switching delay |     |
|                                       |                 | digital input 14     | BOOL        |               | 1ms switching delay |     |
| I <                                   | Þ               | digital input 15     | BOOL        |               | 1ms switching delay | -   |
|                                       |                 |                      |             |               |                     | _   |
| ×                                     |                 |                      |             |               |                     |     |
| Output Debug                          |                 |                      |             |               |                     |     |
| Software module check Ok.             |                 | Line 1 of 4          | COM         | 2 CP260 V2.10 | RUN NUM             | 1   |

Fig. 5.15: Hardware Configuration

#### **Description:**

The button "description" gives hardware information concerning individual modules.



Fig. 5.16: Hardware Description

#### Hardware Manual Inclusive:

This window contains all information about the individual modules. Order numbers and descriptions are included which are otherwise only available from the hardware manual.

#### Variable Declaration Digital Input:

Enter the variable names in the column "PV Name" on the right side. The variable names can be up to 32 characters long. Longer text can entered in the column "Remark". Long texts are dealt with exclusively in the Documentation and are not downloaded in to the control.

| 🕅 B&R Automation Studio - [proj_001.GDM [Project]]         |                  |                |                    |           |  |  |  |
|------------------------------------------------------------|------------------|----------------|--------------------|-----------|--|--|--|
| ∫ File Edit View Insert Open Project Object Tools Window ? |                  |                |                    |           |  |  |  |
| 🗋 🗅 🚅 🖬 🕼 🕺 🛱 💼 🖉 🗠 -                                      | ∼ X @ ſ ď\$      | ) El   🔧   📬   | V V 8              |           |  |  |  |
| Model no. Slot                                             | 1/0 Description  |                |                    |           |  |  |  |
| □ 🐎 proi_001                                               | Name             | Data Type PV N | lame Remark        |           |  |  |  |
| E-03 2005 BP0                                              | digital input 01 | BOOL Key       | 1 1ms switching de | lay       |  |  |  |
| <b>⊢</b> 🧸 3PS794.9 P                                      | digital input 02 | BOOL Key       | 2 1ms switching de | lay       |  |  |  |
| ⊢∭ Р                                                       | digital input 03 | BOOL Key       | 3 1ms switching de | lay       |  |  |  |
| 📔 🔁 🛱 3CP260.60-1 1&2                                      | digital input 04 | BOOL Key       | 4 1ms switching de | lay       |  |  |  |
| - 🔁 3IF613.9 1.1                                           |                  |                |                    |           |  |  |  |
| L L 1.2                                                    | digital input 05 | BOOL           | 1ms switching de   | iay       |  |  |  |
| - 1 3DI476.6 3                                             | digital input 06 | BOOL           | 1ms switching de   | iay       |  |  |  |
|                                                            | digital input 07 | BOOL           | 1ms switching de   | iay       |  |  |  |
| 300473.0 4                                                 | digital input 08 | BOOL           | 1ms switching de   | iay       |  |  |  |
|                                                            | 1 1 N 1 N 00     | DOOL           | 4 515 1            |           |  |  |  |
|                                                            | digital input 09 | BUUL           | Ims switching de   | ay        |  |  |  |
| - 3DM476.6 7                                               | digital input 10 | BUUL           | Ims switching de   | ay        |  |  |  |
|                                                            | digital input 11 | BOOL           | 1 ms switching de  | ay<br>Isu |  |  |  |
| l ∟¶ 9                                                     | ugitarinput rz   | BUUL           | This switching de  | .ay       |  |  |  |
|                                                            | digital input 13 | BOOL           | 1 ms switching de  | au        |  |  |  |
|                                                            | digital input 14 | BOOL           | 1ms switching de   |           |  |  |  |
|                                                            | digital input 15 | BOOL           | 1ms switching de   | au I      |  |  |  |
| I →                                                        | digital input 16 | BOOL           | 1 ms switching de  | au 🔟      |  |  |  |
|                                                            |                  |                |                    |           |  |  |  |
| ×                                                          |                  |                |                    |           |  |  |  |
| A                                                          |                  |                |                    |           |  |  |  |
|                                                            |                  |                |                    |           |  |  |  |
|                                                            |                  |                |                    |           |  |  |  |
| Output Debug Find in Files                                 |                  |                |                    |           |  |  |  |
| For Help, press F1                                         | Line 1 of 5      | ;CO            | M1 CP260 V2.10 RUN |           |  |  |  |

Fig. 5.17: Variable declaration Digital Input

Variable Declaration Digital Output:

| 🚳 B&R Automation Studio - [proj_001.GDM [Project]]          |                |                                               |            |              |                        |  |
|-------------------------------------------------------------|----------------|-----------------------------------------------|------------|--------------|------------------------|--|
| <u>F</u> ile <u>E</u> dit ⊻iew Insert <u>O</u> pen <u>F</u> | <u>P</u> rojec | t O <u>bj</u> ect <u>T</u> ools <u>W</u> indo | w <u>?</u> |              | <u>_ 8 ×</u>           |  |
|                                                             | ) (Ci          | X 🖻   Ľ 🖉 🕸                                   | 1          | 🛍 🤍 💓 💡      |                        |  |
| Model no. Slo                                               | ot             | 1/0 Description                               |            |              |                        |  |
| ⊟ 🏊 proi_001                                                |                | Name                                          | Data Type  | PV Name      | Remark                 |  |
| E-15 2005 BP                                                | 20             | digital output 01                             | BOOL       | Relay_1      | Transistor, 0.5A/24VDC |  |
|                                                             | - 10           | digital output 02                             | BOOL       | Relay_2      | Transistor, 0.5A/24VDC |  |
| ⊢∭ Р                                                        | - 10           | digital output 03                             | BOOL       | Relay_3      | Transistor, 0.5A/24VDC |  |
| 📘 🔁 🛱 🛱 🗍 🗍                                                 | & 2            | digital output 04                             | BOOL [     | Relay_4      | Transistor, 0.5A/24VDC |  |
| 📔 🛛 📜 🖏 31F613.9 1.1                                        | 1              | digital output 05                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
| 1 12                                                        | 2 11           | digital output 06                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
| 301476.6 3                                                  | - 11           | digital output 07                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
| 2004796                                                     | - 10           | digital output 08                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
|                                                             | - 10           |                                               |            |              |                        |  |
| - 341300.6 5                                                | - 10           | digital output 09                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
| - 3AU350.6 6                                                | - 10           | digital output 10                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
| - 3DM476.6 7                                                | - 10           | digital output 11                             | BUUL       |              | Transistor, U.5A/24VDC |  |
|                                                             | - 10           | digital output 12                             | BUUL       |              | Transistor, U.5A/24VDC |  |
| J L 🧃 9                                                     | - 10           | digital output 13                             | BUUL       |              | Transistor, U.5A/24VDC |  |
| · ·                                                         | - 10           | digital output 14                             | BUUL       |              | Transistor, 0.5A/24VDL |  |
| 1                                                           | - 10           | digital output 15                             | BOOL       |              | Transistor, 0.5A/24VDC |  |
|                                                             | - 10           | digital output 16                             | BUUL       |              | Transistor, 0.3A/24VDC |  |
|                                                             | ъÚ             |                                               |            |              |                        |  |
|                                                             | ال             |                                               |            |              |                        |  |
| ×                                                           |                |                                               |            |              | 1                      |  |
|                                                             |                |                                               |            |              |                        |  |
| <b>x</b>                                                    |                |                                               |            |              |                        |  |
|                                                             |                |                                               |            |              |                        |  |
| Uutput Debug Find in Files                                  |                |                                               |            |              |                        |  |
| For Help, press F1                                          |                | Line 1 of 5                                   |            | COM1 CP260 V | /2.10 RUN              |  |

Fig. 5.18: Variable declaration Digital Output

#### **CPU Icon:**

| 🞕 B&R Automation Studio - [pr                                       | oj_001.         | GDM [Project]]                                           |                   |             | _ 🗆 ×        |
|---------------------------------------------------------------------|-----------------|----------------------------------------------------------|-------------------|-------------|--------------|
| ∫ <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>O</u> pe | n <u>P</u> roje | ct O <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u> |                   |             | _ 8 ×        |
| │D 📽 🖬 💋   X 🖣 🖻                                                    | 600             | ·   X ≌   ľ ď 🕸 ⊒↓                                       | 💊 🔯 🤡 🔮           | ?           |              |
| Model no.                                                           | Slot            | Software Log book Description                            | n                 |             |              |
| □ 🖧 proj_001                                                        |                 | Module Name                                              | Version           | Transfer to | Size (bytes) |
| - 1 3PS794.9                                                        | P               |                                                          |                   |             |              |
| -                                                                   | P               | E- System                                                | V 2 10            | LISEB BOM   | 800          |
| E- 👸 3CP260.60-1                                                    | 1&2             | standard                                                 | V 1.20            | USER ROM    | 28468        |
|                                                                     | 1.1             |                                                          |                   |             |              |
| - 1 3DI476.6                                                        | 3               |                                                          |                   |             |              |
| - 🐌 3D0479.6                                                        | 4               |                                                          |                   |             |              |
| - 🕺 3A0350.6                                                        | 5               |                                                          |                   |             |              |
| 3DM476.6                                                            | 7               |                                                          |                   |             |              |
| - 🧕 3E×150.60-1                                                     | 8               |                                                          |                   |             |              |
| 3NW150.60-1                                                         | 9               |                                                          |                   |             |              |
|                                                                     | 10              |                                                          |                   |             |              |
|                                                                     |                 |                                                          |                   |             |              |
|                                                                     |                 |                                                          |                   |             |              |
| ×                                                                   |                 |                                                          |                   |             | I            |
| <b>V</b>                                                            |                 |                                                          |                   |             |              |
|                                                                     |                 |                                                          |                   |             |              |
| U Output Debug                                                      |                 |                                                          |                   |             |              |
| For Help, press F1                                                  |                 | Line 1 of 4                                              | COM2 JCP260 V2.10 | )  RUN      | NUM ///      |

Change to the left side and select the CPU icon.

Fig. 5.19: CPU Icon

#### **Insert: New Object:**

Click on the CPU Icon in the **software configuration** with the **right mouse button** and select "Insert Object".

| 🚳 B&R Automation Studio - [pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oj_001.                                                       | GDM [Project]]                                |                                                     |                      | _ 🗆 ×        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------|--------------|
| <u>ु</u> Eile Edit <u>V</u> iew Insert <u>O</u> pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n <u>P</u> roje                                               | ct O <u>bj</u> ect <u>T</u> ools <u>W</u> ind | low <u>?</u>                                        |                      | _ 8 ×        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bowtie$                                                     | ·   X 🖻   🗂 🗹 🤹                               | ) 🗈 🔜 💊                                             | 0 8                  |              |
| Model no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Slot                                                          | Software Log book [                           | Description                                         |                      |              |
| □ <mark>\$</mark> proi_001<br>□ □ <b>*</b> 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BPO                                                           | Module Name                                   | Version                                             | Transfer to          | Size (bytes) |
| a 3PS794.9<br>31672.9<br>31672.9<br>31672.9<br>31676.6<br>300479.6<br>340350.6<br>300477.6<br>340350.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477.6<br>300477. | P<br>P<br>1.1<br>1.2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | System                                        | Insert Object<br>Declaration<br>Watch<br>Properties | USER ROM<br>USER ROM | 800<br>28468 |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                               |                                                     |                      | (            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                               |                                                     |                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                               |                                                     |                      |              |
| For Help, press F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | Line 1 of 4                                   | COM2 CP260                                          | V2.10 RUN            | NUM /        |

Fig. 5.20: Insert Object

#### **Cyclic Object:**

Select Cyclic Object and confirm by selecting "Continue".



Fig. 5.21: Cyclic Object

#### L\_logic1:

The name of the task is "l\_logic1". The task type should remain in default settings.



Fig. 5.22: "l\_logic1" Task

**IF** "c": The "c" key or button: **IF** will insert "Key\_1". **Alt>+Cursor>** will add connections (**F** ...).

| 🞕 B&R Automation Studio - [l_logic1.SRC [Ladder    | Diagram]]                                             | - 🗆 × |
|----------------------------------------------------|-------------------------------------------------------|-------|
| <u>File Edit View Insert Open Project Ladder C</u> | D <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u> | - 8 × |
| 🗋 🗅 🚅 🖬 🕼 👗 🖻 隆 🗠 🗠 🗙 😭                            | 비 역 🕸 🗉 💊 🐞 📎 📎 🤱                                     |       |
| + + +/+ +P+ +N+ +%+ ( ) (/) (S) (R) (P) (N) (%)    | ədhə (rei) 📑 📑 (* ID: 🔶 🔶 🔶 📢                         |       |
| БООО1<br>  Кеу_1<br>                               | <b>+</b>                                              |       |
|                                                    |                                                       |       |
| For Help, press F1                                 | Net 1, Ln 2, Col 5 COM1 CP260 V2.10 RUN               |       |

Fig. 5.23: LAD Editor

() "C": Capital "C" or the button () creates an output contact. **Space>** opens a dialog box that shows **all the appropriate values**.

| 🗃 B&R Automation Studio - [l_logic1.SRC [Ladder                                                                                                                  | r Diagram]]                                                         | - O X |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|
|                                                                                                                                                                  | O <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u>               | _ 8 × |
| Select variable                                                                                                                                                  | ି ୬ ୫ ଲା ୦ ୮୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦୦ ୦                    |       |
| 0001 <ul> <li>Key_1</li> <li>Key_2</li> <li>Key_3</li> <li>Key_4</li> <li>Relay_1</li> <li>Relay_2</li> <li>Relay_2</li> <li>Relay_3</li> <li>Relay_4</li> </ul> | Add<br>Cancel<br>BOOL<br>global QP5.0.4.1<br>Transistor, 0.5A/24VDC |       |
| File:<br>Relay_1                                                                                                                                                 |                                                                     | 1     |
| Output Debug Find in Files                                                                                                                                       |                                                                     |       |
| For Help, press F1                                                                                                                                               | COM1 CP260 V2.10 RUN                                                | 1     |

Fig. 5.24: Ladder Diagram Variable selection

**<Enter>:** Select "Relay\_1" and also locks LAD with **<Enter>**.

| 📦 B&R Automation Studio - [l_logic1.SRC [Ladde                                            | er Diagram]]                                          | _ 🗆 🗙 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| <u> <u> </u> </u> | O <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u> | - 8 × |
| 🗋 🗅 🚅 🖬 🗿 🐰 🖻 🛍 🗠 🗠 🗙 😭                                                                   | 🖆 🖉 🚉 🔍 🐚 🤍 📎 🤶                                       |       |
| ++++++++++++++++++++++++++++++++++++++                                                    | الله 🔶 🔶 🔶 🕂 Ib: 🕂 الم                                |       |
|                                                                                           |                                                       |       |
| ▲ 0 Error(s) - 0 Warning(s)                                                               |                                                       | 4     |
| Uutput Debug Find in Files                                                                |                                                       |       |
| For Help, press F1                                                                        | Net 1, Ln 2, Col 5 COM1 CP260 V2.10 RUN               |       |

Fig. 5.25: LAD with Output

This step checks the LAD and optimizes it.

| RtD Automation Chudie _ II Jacial CDC II added | Diagram                                   |   |
|------------------------------------------------|-------------------------------------------|---|
| Ele Edit View Insert Open Prinet Ladder        | Diagram]]<br>Okiash Taala Mündaw 2        |   |
| The For Alem Tuser Oben Flolect Fanger         | object Tools <u>w</u> indow <u>r</u>      |   |
| D 🖻 🖬 🕼   X 🖻 🛍   🗠 🗠   X 😭                    | 🖆 🗹 🦃 💷 🔍 🛍 🔍 📎 🧣                         |   |
| +++/++P++N++%+ () () (S) (R) (P) (N) (%)       | ×0119 (88) 📑 🚰 (¥ D:   🛧 🔶 🔶 (48)         |   |
|                                                |                                           | - |
|                                                |                                           |   |
| Key 1 Relay 1                                  |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           |   |
|                                                |                                           | • |
| × C Error(a) C Horning(a)                      |                                           |   |
| S Error(s) - o warning(s)                      |                                           |   |
|                                                |                                           | - |
| Debug Find in Files                            |                                           |   |
|                                                |                                           |   |
| For Help, press F1                             | Net 1, Ln 1, Col 0 JCOM1 JCP260 V2.10 RUN |   |

Fig. 5.26: Ladder Diagram Network overview

<Right Mouse Button>: Various display options can be selected with the right mouse button.

| R&B Automation Studio - II logic1 S    | BC [[ adder Diagram]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 📰 File Edit View Insert Open Projec    | t Ladder Object Tools Window ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                        | X 🖾   L 🗠 📚 💷   🔧   🍓 🔍 🤍   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| + + +/+ +P+ +N+ +№+ ( ) (/) (S) (R) (F | ') (N) (N) → + + + = = = = (** 1b: + + + + + =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 0001                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
| delay 5A/24VDC                         | Insert Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|                                        | Declaration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Key 1 Relay 1                          | Cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| global/P5.0.3.1 global/QP5.0.4.1       | Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| BOOL BOOL                              | Paste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| ──┤  ────( )──-{}                      | Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                                        | ✓ Tupe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                                        | ✓ Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|                                        | ✓ <u>R</u> emark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                        | Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|                                        | 1 top <u>o</u> rdost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ▼ 0 Error(s) - 0 Warning(s)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ᅱ |
| Output Debug Find in Files             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| For Help, press E1                     | Net 1 Jun 1 Col 2 COM1 CR260 V210 RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| rorrielp, press ri                     | INCOLOUR COMINICE COMINICOMI COMINICE COMINICE COMINICE C |   |

Fig. 5.27: Ladder Diagram display possibilities

# 💷 Project: Transfer To Target:

Mit Project: Project: Transfer compiles all tasks and downloads them to the controller.



Fig. 5.28: Ladder diagram Download



Online-mode can be activated via the View menu : Monitor or by pressing the button. In Online-mode editing is **not** possible. Different monitors are active depending on the window opened.



Fig. 5.29: LAD Monitor

#### 7.3 System Monitor:

The PG remains in Online-mode even if the LAD-monitor is closed. The System-Monitor is activated.

| 🞕 B&R Automation Studio - [pro                                       | i_001.GDM [Pro                                                                            | ject]]                                                                                                    |                                                                                                                            |                                                                                          | _ 🗆 ×                                                              |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ∫ <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>O</u> pen | <u>P</u> roject <u>D</u> ebug                                                             | 0 <u>bj</u> ect <u>T</u> ools <u>W</u> indo                                                               | w <u>?</u>                                                                                                                 |                                                                                          | _ 8 ×                                                              |
| D 📽 🖬 🕼   X 🛍 🕞                                                      | න ලා   X 🖻                                                                                | ' L° & © I+ 🔍                                                                                             | 🐧 🐿 🤍 👘                                                                                                                    | ? 🛛 🔹 🏟                                                                                  | ! P) P                                                             |
| Model no.                                                            | Slot Software                                                                             | Log book Description                                                                                      |                                                                                                                            |                                                                                          |                                                                    |
| □ Se proi_001                                                        | Module N                                                                                  | lame                                                                                                      | Target vs. Project                                                                                                         | Location                                                                                 | State                                                              |
|                                                                      | P    - 2 CF                                                                               | PU<br>Cyclic #1 - [10 ms]                                                                                 | coust                                                                                                                      | Lleer PAM                                                                                | RUN                                                                |
|                                                                      | 1 & 2<br>1.1<br>1.2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>2<br>4<br>5<br>6<br>7<br>8<br>9 | System<br>sysconf<br>dbtracer<br>dbtracer<br>standard<br>exermo<br>mathtrap<br>can2000<br>ppman<br>update | equal<br>equal<br>on target only<br>on target only<br>on target only<br>on target only<br>on target only<br>on target only | User ROM<br>User ROM<br>User ROM<br>User ROM<br>SYS ROM<br>SYS ROM<br>SYS ROM<br>SYS ROM | RDY<br>RDY<br>USE<br>RDY<br>RDY<br>RDY<br>RDY<br>RDY<br>RDY<br>USE |
|                                                                      |                                                                                           |                                                                                                           |                                                                                                                            |                                                                                          |                                                                    |
| Transferring l_logi                                                  | ic1 ok                                                                                    |                                                                                                           |                                                                                                                            |                                                                                          | ▲<br>▼<br>▲                                                        |
| U Output Debug Find in Files                                         |                                                                                           |                                                                                                           |                                                                                                                            |                                                                                          |                                                                    |
| For Help, press F1                                                   |                                                                                           | Line 3 of 13                                                                                              | COM1 CP260                                                                                                                 | ) V2.10 RU                                                                               | N //                                                               |

Fig. 5.30: System Monitor

Integrated Automation B&R Automation Studio™

#### 7.4 Summary Creating a Project





Insert Object



I/O - Assignment ->

| BAR Automation Studio - [proj_001.GDM [Project]     File Edit View Inset Open Project Object Ioo     D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Model no. New Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X                                                                                  |
| B → p = 0.0<br>B → | the name and type of the new spoication    the name and type of the new spoication |
| × <u>Rack</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Einish Cancel                                                                      |

Cyclic Object ->

#### Select LAD





Select Variables ->





Network Overview

Transfer Project ->

LAD Monitor





| Name    | Туре | Scope  | Attribute | Value      | Remark                   |
|---------|------|--------|-----------|------------|--------------------------|
| Key_1   | BOOL | global | IP5.0.3.1 |            | digital IN channel 1     |
| Key_2   | BOOL | global | IP5.0.3.2 |            | digital IN channel 2     |
| Relay_2 | BOOL | global | QP5.0.4.2 | * remanent | digital OUT channel<br>2 |

| Project name:  | proj_001 |
|----------------|----------|
| LAD plan name: | l_logic2 |

The program can be written using the same guidelines as outlined in the previous example. Test this task with a LAD monitor.

#### 7.5 Defining Networks

IEC standards stipulate that links should be displayed as networks. Check the networks and their division into 2 networks using the **Enter>** key, or alternatively using the menu **Ladder: Verify Network** 

Example: Two separate Networks

| B&B Automation Studio - Ilad merg SBC                                                                                                                                                                           | [] adder Diagram]]                           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---|
|                                                                                                                                                                                                                 | adder Object Tools Window ?                  |   |
|                                                                                                                                                                                                                 | K 🗗 🗠 🖧 🕸 🗐 🔍 🐚 🕅 🔞 🥊                        |   |
|                                                                                                                                                                                                                 |                                              |   |
| 1 F 12F 1PF 1NF 1WF 1 F 12F 1SF 1SF 1PF 1                                                                                                                                                                       | N) (%) + + + + +   +   +   +   +   +   +   + |   |
| Wey_3         Key_3           global/P5.0.3.3         global/P5.0.3.3           BOOL         BOOL           Wey_4         Relay_4           global/P5.0.3.4         global/P5.0.4.4           BOOL         BOOL |                                              | * |
| X t Transferring   logici ok                                                                                                                                                                                    |                                              |   |
| a manarering i_logici ok                                                                                                                                                                                        |                                              | Ŧ |
|                                                                                                                                                                                                                 |                                              |   |
| Output Debug Find in Files                                                                                                                                                                                      |                                              |   |
| For Help, press F1                                                                                                                                                                                              | Net 2, Ln 1, Col 0 COM1 CP260 V2.10 RUN      |   |

Fig. 5.31 Two Networks

If a line in a network is completed with **<shift><Enter>**, the network is expanded. This means that no new network is created.

Example: A two line Network

| 🚳 B&R Automation Studio - [l_logic2.SRC [Lade                                                                                                                           | ler Diagram]] 📃 🗖 🗙                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| File Edit View Insert Open Project Ladder                                                                                                                               | Object Iools Window ?                   |
| 🗋 🗅 🚅 🖬 🎒 🐰 🖻 📸 🗠 🖂 🗙 🖆                                                                                                                                                 | ² 🖆 🖉 😫 🔍 🐚 🔍 📎 🤋                       |
| ++++++++++++++++++++++++++++++++++++++                                                                                                                                  | ) >>m= (ker) 🗊 💤 (+ 1b: 🔶 🔶 🔶 🚚         |
| Image: New _1         Key _2         Relay, 2           global/P5.0.3.1         global/P5.0.3.2         global/QP5           BOOL         BOOL         BOOL           + | 2<br>.0.4.2                             |
| X * Transferring l_logic1 ok                                                                                                                                            |                                         |
| Uutput Debug Find in Files                                                                                                                                              |                                         |
| For Help, press F1                                                                                                                                                      | Net 1, Ln 1, Col 0 COM1 CP260 V2.10 RUN |

Fig. 5.32: Two Line Network

#### 7.5.1 Linking Two Networks

#### Ladder: Merge Networks

Two networks can be connected using the menu option Ladder: Merge Networks. The key combination is **<Strg><Enter>.** The top network is always connected to the bottom network.

| 📦 B&R Automation Studio - [lad_merg.SR                                                                                                        | C [Ladder Diagram]]                     | - 🗆 × |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| <u>₽ Eile Edit View Insert Open Project</u>                                                                                                   | Ladder Object Tools Window ?            | - 8 × |
| 🗋 🗅 🚅 🖬 🎒 🕺 🛅 🎇 🗠 🗠 🗋                                                                                                                         | x 🖆 🖆 🖉 😫 🔍 🐚 🤍 💖 🤶                     |       |
| ++++++++++++++++++++++++++++++++++++++                                                                                                        | (N) (R) >0119 (NR) 📑 📰 (* Ib: 🔶 🔶 🔶     |       |
| 0001<br>Key_3 Key_3<br>globaMP5 0.3.3 globaMP5 0.3.3<br>BOOL BOOL<br>0002<br>Key_4 Relay_4<br>globaMP5 0.3.4 globaMQP5 0.4.4<br>BOOL BOOL<br> |                                         | 4     |
| * Transferring l_logic1 ok                                                                                                                    |                                         |       |
|                                                                                                                                               |                                         |       |
| Uutput Debug Find in Files                                                                                                                    |                                         |       |
| For Help, press F1                                                                                                                            | Net 1, Ln 1, Col 1 COM1 CP260 V2.10 RUN |       |

Fig. 5.33: Connection, Net 0001 with Net 0002

<Strg><Enter>: Merge Networks

| Rep Automation Charles, Red and CDC Redd                    | Di                                      |          |
|-------------------------------------------------------------|-----------------------------------------|----------|
| The Automation Studio - Itau_merg.shc [Laud                 |                                         |          |
| # File Edit View Insert Upen Project Ladder                 | Ubject Loois Window ?                   | <u> </u> |
| 🗍 🗅 🚅 🖬 🕼   🖇 🖻 🕄   🗠 🗠   🗙 😭                               | l' 🗹 🦃 💷 🔦 📬 📎 📎 🧣                      |          |
| 1 + 1/+ 1P+ 1N+ 1%+ ( ) (/) (S) (R) (P) (N) (%)             | 9000 (kt) 🗄 🚅 (¥ Ib: 🔶 🔶 🛊 🖊            |          |
| 0001                                                        |                                         | <b>^</b> |
| Key_3 Key_3<br>global/P5.0.3.3 global/P5.0.3.3<br>BOOL BOOL |                                         |          |
| Key_4 Relay_4                                               |                                         |          |
| global/IP5.0.3.4 global/QP5.0.4.4<br>BOOL BOOL              |                                         |          |
|                                                             |                                         |          |
|                                                             |                                         | -        |
|                                                             |                                         |          |
| * Transferring l_logic1 ok                                  |                                         | -        |
|                                                             |                                         | Ľ        |
| Output Debug Find in Files                                  |                                         |          |
| For Help, press F1                                          | Net 1, Ln 2, Col 0 COM1 CP260 V2.10 RUN |          |

Fig. 5.34 : Connected Networks

If the networks are not connected and acknowledged with Verify, they are separated from the Editor.

#### 7.6 Summary Program Toolbar, LADToolbar

#### Program Toolbar:

| D New Project      | Open Project     | Save File       | Save All      |  |
|--------------------|------------------|-----------------|---------------|--|
| Cut                | Сору             | Paste           | Undo          |  |
| Redo               | X                | Property        | Dpen File     |  |
| Declaration        | Build            | Transfer        | Monitor       |  |
| Stop PCC (Service) | Coldstart (blue) | Warmstart (red) | <b>?</b> Help |  |

#### LAD Toolbar:

| 111                     | · 1PF 1NF 1%F ()                                 | (⁄) (s) | $(R)$ $(P)$ $(N)$ $(P_N)$                                          | ∋omp (ref)        | [] [ <sup>]</sup>   (* 1)                                         | : 🕂 - | +++                                                           |
|-------------------------|--------------------------------------------------|---------|--------------------------------------------------------------------|-------------------|-------------------------------------------------------------------|-------|---------------------------------------------------------------|
|                         |                                                  |         |                                                                    |                   |                                                                   |       |                                                               |
| 4 F                     | Normally Open                                    | 1/1     | Normally Closed                                                    | ᅱᆉ                | Pos Trans                                                         | -lnf- | Neg Trans                                                     |
|                         |                                                  |         |                                                                    |                   | Pos. Edge                                                         |       | Neg. Edge                                                     |
|                         | <c></c>                                          |         | <1>                                                                |                   |                                                                   |       | <n></n>                                                       |
| - <b>f</b> ‰ <b> </b> - | Trans<br>Both Edges<br>< <b>b&gt;</b>            | ()      | Coil<br>Output<br>< <b>shift&gt;<c></c></b>                        | $\langle \rangle$ | Negated Coil<br>Negated Output<br>< <b>shift&gt;<i></i></b>       | (s)   | Set Coil<br>Set<br><b><shift><s></s></shift></b>              |
| (R)                     | Reset Coil<br>Reset<br>< <b>shift&gt;<r></r></b> | (P)     | Pos. Trans. Coil<br>Pos. Edge output.<br>< <b>shift&gt;<p></p></b> | (1)               | Neg. Trans Coil<br>Neg. Edge output.<br>< <b>shift&gt;<n></n></b> | (%)   | Trans. Coil<br>Both edge output.<br>< <b>shift&gt;<b></b></b> |
| ЭЭНР                    | Jump                                             | (RET)   | Return                                                             | ÷                 | Function Block                                                    | 믭     | Analog Value                                                  |
|                         | <j></j>                                          |         | <e></e>                                                            |                   | <f></f>                                                           |       | <space></space>                                               |
| (*                      | Description                                      | Ib:     | Label                                                              | +                 | Line Left                                                         | +     | Line Right                                                    |
|                         | <d></d>                                          |         | <l></l>                                                            |                   | <alt><culeft></culeft></alt>                                      |       | <alt><curight></curight></alt>                                |
| +                       | Line Up                                          | +       | Line Down                                                          |                   |                                                                   | 4     | Verify<br><b><enter></enter></b>                              |
|                         | <alt><cuup></cuup></alt>                         |         | <alt><cudown></cudown></alt>                                       |                   |                                                                   |       |                                                               |

Ę

# **B&R 2000**

| 1 | AUT | OMATION STUDIO CONSTRUCTION |
|---|-----|-----------------------------|
|   | 1.1 | Creating a Project2         |
|   | 1.2 | Software Configuration:     |
| 2 | MUI | TITASKING ON THE PCC4       |
|   | 2.1 | Multitasking4               |
|   | 2.2 | Task Classes6               |
|   | 2.3 | Task Parameters             |
| 3 | PCC | I/O HANDLING                |
|   | 3.1 | Displays12                  |
| 4 | VAR | IABLE DECLARATION14         |
| 5 | MEN | U STRUCTURE                 |

#### **1 AUTOMATION STUDIO CONSTRUCTION**

#### General Information.

Automated tasks are divided into separate objects for added clarity. These objects are project dependant.

• Different tasks on a processor that must be worked on simultaneously

The **Project Editor** is a high performance tool enabling straightforward analysis and lay-out management of the project.

Tasks concerning the **Hardware configuration** (left side) act to clarify the division of the Hardware.

The right side automatically relates to the left.

Specific properties of the modules are always available on the right.

A specific property of the CPU is the software.

#### **1.1 Creating a Project**



Fig. 6.1: Creating a Project

#### **1.2 Software Configuration:**

Regarding the software – all tasks (that are running on a processor), data modules, and system modules are treated a objects.

E.g. Cyclic Object:

| Software Log book Description |         |             |              |
|-------------------------------|---------|-------------|--------------|
| Module Name                   | Version | Transfer to | Size (bytes) |
| 🗆 😰 CPU                       |         |             |              |
| E-C Cyclic #1 - [10 ms]       |         |             |              |
| - 🖵 Llogic1                   | V 0.00  | User RAM    | 320          |
| Llogic2                       | V 0.00  | User RAM    | 0            |
| 🔄 🖶 🎒 System                  |         |             |              |
| - sysconf                     | V 2.10  | User ROM    | 800          |
| La runtime                    | V 1.00  | User ROM    | 9164         |
| -                             |         |             |              |
|                               |         |             |              |
|                               |         |             |              |
|                               |         |             |              |
|                               |         |             |              |
| 1                             |         |             |              |
| <u></u>                       |         |             |              |

Fig. 6.2: Software Configuration



Fig. 6.3: Dialog SW configuration

#### 1.2.1 Possible types of object are:

#### Cyclic Object

Written by the user in various programming languages.

| Ladder Diagram   | <br>LAD                 |
|------------------|-------------------------|
| Instruction List | <br>IL                  |
| Structured Text  | <br>ST                  |
| ANSI-C           | <br>High level language |

#### Non Cyclic Object

System tasks: For special system solutions (default: inaccessible).

#### Data Object

Fulfills the function of a table with the option of writing the data object to the running time.

#### System Object

Object available for use from Libraries (net2000, CAN, profibus, plus more).

#### Advanced Object

e.g. NC-Axles, CAM disk ... (for future developments).

#### **Exception Tasks**

Are grouped as **Cyclic tasks**. The Exception task is represented in the **Parameter Resource**.

#### 2 MULTITASKING ON THE PCC

#### 2.1 Multitasking

Task A Task is an **independent part** of the program representing many processes. (Digital and analog connections, rules, positioning, measurements.....) e.g. "l\_logic1"

#### Multitasking

During multi-tasking **the processor deals with one or more tasks.** These tasks are worked on simultaneously.

This division of the task is of great advantage and helps us:

- Structure the application
- Set the task in the best suitable programming language
- Program individual functions and test them
- Maintain the individual tasks with ease

| Module Name  | Version |  |
|--------------|---------|--|
| ⊡ 🙍 CPU      |         |  |
|              | V 0.00  |  |
|              | V 0.00  |  |
| 📄 🗗 🐴 Sustem |         |  |

Fig. 6.4: Section of the Software Tree

For PCC use, a multitasking system must posses the following qualities:

- Parallel processing of multiple Tasks
- Deterministic Multitasking (with accurate time predictions).
- Different and adjustable cycle times with monitors
- Identical (consistent) I/O-image for every Task class



Cycle time is predetermined and set by the user.

The Cycle time does not tell us anything about the running time of the task.

**Rest time** refers to the CPU-time within the system that is not being used. This is known as an "IDLE" state.



The task scheduler activates the required tasks at the beginning of a task class and also sets up the I/O window.

At each cycle starts the following checks are made:

- Whether the Task is finished within the set time
- Whether the new input window is fully available
- Whether the output window has been sent

#### 2.2 Task Classes

A Task class comprises of all PCC tasks with the same cycle times.

The user can choose between:

• Timer Task (High Speed Task)

Designed for very fast, time critical applications. Timer-tasks are activated by the **Hardware timer**, can be called up in very short intervals (from 1msec) and monitored.

• Normal Task

A cyclically running program. The user provided cycle time is monitored by the system manager.

| Resource  | Cycle Time | Tolerance  |
|-----------|------------|------------|
| Timer#1   | 3 msec     | /          |
| Cyclic#1  | 10 msec    | 20 msec    |
| Cyclic #2 | 50 msec    | 50 msec    |
| Cyclic #3 | 100 msec   | 100 msec   |
| Cyclic #4 | 10 msec    | 30.000msec |

#### System B&R2010

| Resource  | Cycle Time | Tolerance   |
|-----------|------------|-------------|
| Timer#1   | 3 msec     | /           |
| Timer #2  | 5 msec     | /           |
| Timer #3  | 7 msec     | /           |
| Timer #4  | 9 msec     | /           |
| Cyclic#1  | 10 msec    | 20 msec     |
| Cyclic #2 | 50 msec    | 50 msec     |
| Cyclic #3 | 100 msec   | 100 msec    |
| Cyclic #4 | 10 msec    | 30.000 msec |

The values in the table are default values. These values can be changed in the "properties" dialog of the CPU..

All tasks in Cyclic#4 are completed on the principle "as fast as possible". The task start is always a multiple of 10msec. **The tolerance is added to the Task class cycle time.** If this time is breached the system manager generates a **maximum cycle time** injury.

Example 1: Comparison of Cyclic#1 and Cyclic#3 with a task of 9msec running time. The task will run through Cyclic#1 once and Cyclic#3 once.



From the diagram the following points can easily be made:

| Resource | Running time total<br>in 100 msec | Idle time<br>per run. | System utilization<br>in % |
|----------|-----------------------------------|-----------------------|----------------------------|
| Cyclic#1 | 10                                | 1 msec                | 90 %                       |
| Cyclic#3 | 1                                 | 91 msec               | 9 %                        |

Example 2: Tasks run in different task classes in a system:

| Runtime   | Resource  | Task Class Cycle Time                        |
|-----------|-----------|----------------------------------------------|
| 0.8 msec  | Cyclic#1  | 10 msec                                      |
| 1.6 msec  | Cyclic #2 | 50 msec                                      |
| 20.0 msec | Cyclic #3 | 100 msec                                     |
| 2.2 msec  | Cyclic #4 | As fast as possible, when the system is free |



The above diagram shows more important points:

- Cyclic#1 has the highest priority of the normal Task Classes. Cyclic#2 then follows etc.
- The high priority classes interrupt the lower ones:
- The task classes with different cycle times are started with a 10msec delay.

#### 2.3 Task Parameters

# **Edit:** Properties:



Fig. 6.5: Task Parameters

| operties         |                |                  |            | 2    |
|------------------|----------------|------------------|------------|------|
| General Memory   |                |                  |            |      |
| = <u></u><br>₽°  | Llogic1        |                  |            |      |
| Туре:            | Ladder Diagr   | am               |            |      |
| Init Subroutine: | No             |                  |            |      |
| Resource:        | Cyclic #1 - [1 | 0 ms 🔻           |            |      |
| Scheme status:   | • enabled      | C disa           | abled      |      |
| Rebuild info:    | C on           | $\mathbf{C}$ off |            |      |
| Transfer to:     | User RAM       | •                |            |      |
|                  | Project:       |                  | Target:    |      |
| Version:         | 0.00           |                  | 0.00       |      |
| Date:            | 15.10.1999     |                  | 15.10.1999 |      |
| Size:            | 320            | Byte             | 320        | Byte |
|                  | ОК             | Ab               | brechen    |      |

Fig. 6.6: Dialog Task Parameter

The right mouse button opens the pop Up menu.

- Memory: Current memory use is shown on the "Memory" page.
- Type: Task Type (LAD, ANSI-C).

Init Subroutine: Select Yes/No

Resource: List box settings for each task can be edited here.

Transfer Info: Target of the task Download. RAM, USER ROM, FIXRAM, MEMCARD. Example: Now that the task classes have been thoroughly discussed, we can now look at the effect of changing task classes in the following exercise.

Create the following circuit diagram.



| Name    | Туре | Scope  | Attribute | Value | Remark                        |
|---------|------|--------|-----------|-------|-------------------------------|
| Relay_3 | BOOL | global | QP5.0.4.3 |       | <b>Digit. OUT</b> , channel 3 |

| Project name: | proj_001 |
|---------------|----------|
| Task name:    | l_cyclic |

Resource:

- 1. Create "l\_cyclic" using Cyclic#3.
- 2. Create "l\_cyclic" using Cyclic#2.

Test for time differences between the two classes.

#### Starting Sequence, Running Sequence:

The setting of the starting or running sequence occurs in the software configuration. Control of the procedure runs from top to bottom.



Fig. 6.7: Move Task Class

The tasks can be moved using the left or right mouse button, in a "Drag and Drop" maneuver.

When using the left mouse button no inquiry box will appear.

When using the right mouse button a dialogue box will be opened (see Fig. 6.7: Move Task Class)



Fig. 6.8: Change Task Class

The tasks can be moved between the various Task classes.

In the diagrams shown here the tasks are moved with the right mouse button.

| 🗆 😰 CPU                    |        |
|----------------------------|--------|
| 🔁 😂 Cyclic #1 - [10 ms]    |        |
| 니 나빠 Llogic2               | V 0.00 |
| 🗗 😳 🗍 Cyclic #3 - [100 ms] |        |
| – 🗐 📙ogic1                 | V 0.00 |
|                            | V 0.00 |
| E-🎒 System                 |        |
| - 🖓 sysconf                | V 2.10 |
| La runtime                 | V 1.00 |
| _                          |        |

Fig. 6.9: Move Closed
#### **3 PCC I/O HANDLING**

#### 3.1 Displays.

The PCC I/O operation is shown as follows:



The input indicator is found at the beginning of the task class. Every task class has its own input indicator. The smallest unit of data that is transported by the I/0 bus is a BYTE.



The task class specific output indicator is updated at the end of each Task Class. Every Task Class enters information on to the same output indicator.

Using direct I/O functions, individual Inputs or Outputs of a task can be read or written.

**The internal variable image is read and written directly from the CPU.** Internal variables can be defined as follows:

- global ... Variable existing for the entire PCC
- local ... Variable existing only in the task



IMPORTANT: These are only used for internal variables.

#### **DPR** Controller

The **DPR controller** coordinates access to the multi-processors on the entire DPR. **Bit/Byte access** is also supported by the DPR controller e.g. the CPU does not differentiate whether a Bit, a negated Bit, or byte value is to be processed.

#### **4 VARIABLE DECLARATION**

Every contact in the program is referred to with a symbolic name. In the variable declaration the **relationship between symbolic names and the hardware** are defined (inputs, outputs, internal variables).



During variable declaration the following points are defined.

- Name ... Name of the PV
- Type ... Data type of the Variable
- Scope ... Validity class
- Attribute ... I/Os or internal declaration
- Value ... Initialization value
- Remark ... Additional descriptions (long name)

| Name        | Туре | Scope  | Attribute | Value      | Remark                   |
|-------------|------|--------|-----------|------------|--------------------------|
| Key 1       | BOOL | global | IP5.0.3.1 |            | 1ms switching delay      |
| Key_2       | BOOL | global | IP5.0.3.2 |            | 1ms switching delay      |
| Key_3       | BOOL | global | IP5.0.3.3 |            | 1ms switching delay      |
| Key_4       | BOOL | global | IP5.0.3.4 |            | 1ms switching delay      |
| analog_in1  | INT  | global | IP5.0.5.1 |            | ±10 V, resolution 12 Bit |
| analog_in2  | INT  | global | IP5.0.5.2 |            | ±10 V, resolution 12 Bit |
| analog_in3  | INT  | global | IP5.0.5.3 |            | ±10 V, resolution 12 Bit |
| analog_in4  | INT  | global | IP5.0.5.4 |            | ±10 V, resolution 12 Bit |
| Relay_1     | BOOL | global | QP5.0.4.1 | * remanent | Transistor, 0.5A/24VDC   |
| Relay_2     | BOOL | global | QP5.0.4.2 | * remanent | Transistor, 0.5A/24VDC   |
| Relay_3     | BOOL | global | QP5.0.4.3 | * remanent | Transistor, 0.5A/24VDC   |
| Relay_4     | BOOL | global | QP5.0.4.4 | * remanent | Transistor, 0.5A/24VDC   |
| analog_out1 | INT  | global | QP5.0.6.1 | * remanent | ±10V, resolution 12Bit   |
| analog_out2 | INT  | dobal  | 0P5062    | * remanent | +10V_resolution 12Bit    |

Fig. 6.10: Variable declaration overview

#### Name

- The first **32 characters** of the name are significant, further characters are entered only in remark
- The **first character** of a name **must** be a **letter** or "\_"
- Only "\_" is recognized as a non-letter character
- **Capitals** and **lower case text** are differentiated (case sensitive)
- The name **must not** include any **key words** (e.g. Command, operator...)

#### Туре

| B&R Automation     | Studio - [Cpu [De             | claration]]          |                                       |            |             |                |
|--------------------|-------------------------------|----------------------|---------------------------------------|------------|-------------|----------------|
| 🛃 Eile Edit Insert | ⊻iew <u>O</u> pen <u>P</u> ro | ject O <u>bj</u> ect | <u>T</u> ools <u>W</u> indow <u>?</u> |            |             | _ 8 ×          |
| 🗅 🖻 🖬 💋   2        |                               | ~   X 🖻              | l' d 🕸 💵                              | 🔦   🐚 🥂 🔇  | 0 💡         |                |
| Name               | Туре                          | Scope                | Attribute                             | Value      | Remark      |                |
| val2               | SINT                          | global               | memory                                | * remanent |             |                |
| val1               | SINT                          | global               | memory                                | * remanent |             |                |
| res                | SINT                          | global               | memory                                | * remanent |             | S. 1.2         |
| Key_1              | ssign Data Type               |                      |                                       |            | ?           | Ing delay      |
| Key_2              | Calaman                       | A i                  | - Anne fra                            |            |             | hing delay     |
| Kev 4              | category:                     | Assig                | nitem to:                             |            |             | hing delay     |
| Relay 1            | Basic data type               | - <b>-</b>           | BOOL                                  |            | OK          | 0.5A/24VDC     |
| Relay_2            |                               | •                    | DATE AND TIME                         |            |             | 0.5A/24VDC     |
| Relay_3            |                               |                      | DINT                                  |            | Cancel      | 0.5A/24VDC     |
| Relay_4            | Arrair 1                      |                      | INT                                   |            |             | 0.5A/24VDC     |
| analog_in1         | Candy. I.                     | -                    | DEAL                                  |            |             | plution 12 Bit |
| analog_in2         | 1                             | -1 <b>-</b>          | NEAL                                  |            |             | plution 12 Bit |
| analog_in3         | Length: J                     | <b>T</b>             | SINT                                  |            |             | plution 12 Bit |
| analog_out1        | ·                             | - •                  | STRING                                |            |             | Jution 12 Bit  |
| analog_out?        | - Info-                       | •                    | TIME                                  |            |             | lution 12Bit   |
| analog_out2        |                               | •                    | UDINT                                 |            |             | lution 12Bit   |
| analog_out4        | Min                           | -128 💊               | UINT                                  |            |             | lution 12Bit   |
|                    | Max                           | 127                  | USINT                                 |            |             |                |
| ≚ * Transferr      | No. of items                  | 0                    |                                       |            |             | e, Path: c🔺    |
| 🔺 * Transferr      | Bit length                    | 0                    |                                       |            |             |                |
| <u></u>            | Byte length                   | 1 5                  |                                       |            |             | _              |
|                    |                               | Filter:              |                                       |            |             |                |
|                    |                               | SINT                 |                                       |            |             |                |
| Uutput Debug       |                               |                      |                                       |            |             |                |
| For Help, press F1 |                               |                      | Line 3 of 19                          | COM1 0     | CP260 V2.10 | ) RUN //       |

Fig. 6.11: Variable declaration Type selection

The possible types are checked and added to the declaration immediately. If, when using Functions blocks different types are possible, these can be selected using <Space>..

Possible types and relating value ranges

| Name  | Bit-Size | Value Range                  | Use          |
|-------|----------|------------------------------|--------------|
| BOOL  | 1        | 0 1                          | digital I/Os |
| DINT  | 32       | -2 147 483 648 2 147 483 647 |              |
| INT   | 16       | -32768 32767                 | analog I/Os  |
| SINT  | 8        | -128 127                     |              |
| UDINT | 32       | 0 4 294 967 295              |              |
| UINT  | 16       | 0 65535                      |              |
| USINT | 8        | 0 255                        |              |
| REAL  | 32       | -3.4 E38 3.4 E38             |              |

To save text and data formats:

| Name          | Width       | Value Range                     | Use              |
|---------------|-------------|---------------------------------|------------------|
| STRING        | 1 – xx Byte | 2 characters – 32767 characters | "Text"           |
| TIME          | 4 Byte      | 0 4 294 967 295 msec            | Time difference  |
| DATE_AND_TIME | 4 Byte      | Seconds since 1970              | Date Calculation |

#### Analog Inputs and Analog Outputs

The control generation B&R2000 always uses analog values between the range +32767 to -32768, independent of the hardware resolution of the card. This adaptation is conveyed to the card.

Data type is always INT (16 Bit)



#### Scope

| Name     | Туре | Scope   | Attribute | Value      | Remark |
|----------|------|---------|-----------|------------|--------|
| AValue   | UINT | dobal 💌 | memory    | * remanent |        |
| Count_Up | CTU  |         | memory    |            |        |
| OutVal   | UINT |         | memory    | * remanent |        |
| Value    | UINT | giobai  | memory    | * remanent |        |

Fig. 6.12: Variable declaration. Validation

- local ... Only recognized in the task: Variable for internal use
- global ... Variables involved in data exchange between tasks. I/O symbols are assigned to attribute in I/Os.

| task1 | local_var = 19  |                 |
|-------|-----------------|-----------------|
| task2 | $local_var = 1$ | global_var = 22 |
| task3 | local_var = 26  |                 |



#### Attribute

| Name     | Туре | Scope  | Attribute | Value      | Remark               |
|----------|------|--------|-----------|------------|----------------------|
| AValue   | UINT | global | memory 💌  | * remanent |                      |
| Count_Up | CTU  | global |           |            |                      |
| OutVal   | UINT | global | Imemory   | * remanent |                      |
| Rel_1    | BOOL | global | UCONSTANT | * remanent | Transistor, 2A/24VDC |
| Value    | UINT | global | memory    | * remanent |                      |

Fig. 6.13: Variable declaration Attribute memory

| Name     | Туре | Scope  | Attribute  | Value      | Remark               |
|----------|------|--------|------------|------------|----------------------|
| AValue   | UINT | global | constant 💌 | 00123      | Konstante für FUB    |
| Count_Up | CTU  | global |            | 4          |                      |
| OutVal   | UINT | global | memory     | * remanent |                      |
| Rel_1    | BOOL | global | GUNSTANT   | * remanent | Transistor, 2A/24VDC |
| Value    | UINT | global | memory     | * remanent |                      |

Fig. 6.14: Variable declaration Attribute constant

| I/O symbol | <br>abbreviated term of the I/O- point. Attributed to the hardware configuration. |
|------------|-----------------------------------------------------------------------------------|
| Memory     | <br>Internal operation memory.                                                    |
| Constant   | <br>Constant value. Cannot be change in the program.                              |

The individual variables can be identified by their color code.

| I/Os      | <br>red   |
|-----------|-----------|
| Internal  | <br>black |
| Constants | <br>green |

#### Value

| Name     | Туре | Scope  | Attribute | Value      | Remark                   |
|----------|------|--------|-----------|------------|--------------------------|
| AValue   | UINT | global | constant  | 00123      |                          |
| AW_aus   | INT  | global | QP5.0.6.1 | * remanent | ±10V, resolution 12Bit   |
| AW_ein   | INT  | global | IP5.0.5.1 |            | 010 V, resolution 12 Bit |
| Count_Up | CTU  | global | memory    |            |                          |
| OutVal   | UINT | global | memory    | * remanent |                          |
| Rel_1    | BOOL | global | QP5.0.4.1 | * remanent | Transistor, 2A/24VDC     |
| Rel_2    | BOOL | global | QP5.0.4.2 | * remanent | Transistor, 2A/24VDC     |
| Taster_1 | BOOL | global | IP5.0.3.1 |            | 10ms switching delay     |

Fig. 6.15: Variable declaration. Initialization

Initialization value for Internals or outputs.

The value assignment follows the variable declaration. The required value is entered in the position of \*remnant.

At every initialization (after power cuts, warm starts, program download, cold start etc) the initial values are automatically entered. The program variables can of course be overwritten when the task runs.

- Information: Variables that can be initialized though declaration, can also be overwritten by an **INIT SP**. The Init Sp is executed **after** the variable declaration.
- Remark Additional text as commentary. Serves only as documentation and can be up to 34 characters long.

#### 4.1.1 Classification of the program variables to hardware

| Model no.              | Slot  | 1/0      | Description |           |               |                      |      |
|------------------------|-------|----------|-------------|-----------|---------------|----------------------|------|
| E > PR0J_001           |       | Name     |             | Data Type | PV Name       | Remark               | •    |
| E- 🍞 2005              | BP0   | analog   | input 06    | INT       |               | analog input (temp.) | - 1  |
| — 🔍 3PS794.9           | P     | analog   | output 06   | INT       |               | analog input (comp.) |      |
| ⊢∎                     | P     | <u> </u> |             |           |               |                      |      |
|                        | 1 & 2 | analog   | input 07    | INT       | temperature 7 | analog input (temp.) |      |
| - 🕹 3IF613.9           | 1.1   | analog   | output 07   | INT       |               | analog input (comp.) |      |
|                        | 12    |          |             |           |               |                      |      |
|                        | 3     | analog   | input 08    | INT       |               | analog input (temp.) |      |
| 300470.0               |       | analog   | output 08   | INT       |               | analog input (comp.) | _    |
| 300473.6               | 2     |          |             |           |               |                      |      |
| - X, 341350.6          | 2     | status   | output 01   | USINT     |               | mode register        | - 11 |
| - 🔍 3A0350.6           | 6     | status   | output 02   | USINT     |               | mode register        |      |
| - 🛼 3DM476.6           | 7     | status   | output 03   | USINT     |               | mode register        |      |
| - <u>M</u> 3EX150.60-1 | 8     | status   | output 04   | USINT     |               | mode register        |      |
| - 11 3AT660.6          | 9     |          |             |           |               |                      | - 11 |
|                        | 10    | status   | nput 01     | USINT     |               | state register       |      |
| 9                      |       | status   | nput 02     | USINT     |               | state register       |      |
|                        |       | status   | input 03    | USINT     |               | state register       | _    |
|                        |       | status   | input 04    | USINT     |               | state register       | -    |
|                        |       |          |             |           |               |                      |      |

Fig. 6.16: I/O Classification

| Model no.                  | Slot       | 1/0 Description  |           |               |                      |
|----------------------------|------------|------------------|-----------|---------------|----------------------|
| E . PROJ_001               |            | Name             | Data Type | PV Name       | Remark 🔺             |
| E- 🏂 2005                  | BPO        | analog input 06  | INT       |               | analog input (temp.) |
| — 🔍 3PS794.9               | P          | analog output 06 | INT       |               | analog input (comp.) |
| l ⊢ <b>≬</b>               | P          |                  |           |               | 2                    |
| 📴 🛅 3CP260.60-1            | 1 & 2      | analog input 07  | INT       | temperature_7 | analog input (temp.) |
| - 🕹 3IF613.9               | 1.1        | analog output 07 | INT       |               | analog input (comp.) |
|                            | 12         |                  |           |               |                      |
| 301476.6                   | 3          | analog input 08  | INT       |               | analog input (temp.) |
| 200479.6                   | 4          | analog output 08 | INT       |               | analog input (comp.) |
| 300473.0                   | -          |                  |           |               |                      |
| - 341350.6                 | 5          | status output 01 | USINT     | AT660_Mode1   | mode register        |
| - <mark>₹,</mark> 3A0350.6 | 6          | status output 02 | USINT     | AT660_Mode2   | mode register        |
| - 🔥 3DM476.6               | 7          | status output 03 | USINT     |               | mode register        |
| - 👸 3EX150.60-1            | 8          | status output 04 | USINT     |               | mode register        |
| 34T660.6                   | <u>)</u> 9 |                  |           |               |                      |
|                            | 10         | status input 01  | USINT     |               | state register       |
|                            | 10         | status input 02  | USINT     |               | state register       |
| 1                          |            | status input 03  | USINT     |               | state register       |
|                            |            | status input 04  | USINT     |               | state register 🗨     |

Fig. 6.17: Mode Classification



Fig. 6.18: Order information

I/O classification AT660. (Fig: 6.15)

With the AT660 Module the user can select **"mode variables**" in additional to the normal analog I/O variables (Fig: 6.16).

The **status information** of the module can be defined here. The declaration runs like those from normal variables.

Order information contains the documentation of each module.

The user has the most important current information.

#### **5 MENU STRUCTURE**

| 📰 <u>F</u> ile <u>E</u> d | lit <u>V</u> iew | Insert | <u>O</u> pen | <u>P</u> roject | 0 <u>bj</u> ect | <u>T</u> ools | <u>W</u> indow | 2 | _ 8 × |
|---------------------------|------------------|--------|--------------|-----------------|-----------------|---------------|----------------|---|-------|
|---------------------------|------------------|--------|--------------|-----------------|-----------------|---------------|----------------|---|-------|

File:

| <u>N</u> ew Project<br>Open Project<br><u>C</u> lose<br>Close P <u>r</u> oject | Ctrl+N<br>Ctrl+O |
|--------------------------------------------------------------------------------|------------------|
| <u>S</u> ave<br>Save A <u>I</u> I                                              | Ctrl+S           |
| Page Setup<br><u>P</u> rint                                                    | Ctrl+P           |
| <u>E</u> xport<br><u>I</u> mport                                               |                  |
| 1 C:\projects\\proj_001.GDM                                                    |                  |
| Exit                                                                           |                  |

Create New Project Open existing project Close current editor Close current project. Save current file Save all changed files Page settings for print out. Print Export the project Import File list with recently opened files. End program

#### Edit:

| <u>U</u> ndo       | Ctrl+Z    | Reverse last alteration |
|--------------------|-----------|-------------------------|
| <u>R</u> edo       | Ctrl+Y    | Repeat last alteration  |
| Cu <u>t</u>        | Ctrl+X    | Cut out the marked text |
| <u>Copy</u>        | Ctrl+C    | Copy the marked text    |
| Paste              | Ctrl+V    | Insert on to the page   |
| Select <u>A</u> ll | Ctrl+A    | Select all              |
| <u>D</u> elete     | DEL       | Delete the marked text  |
| Eind               | Ctrl+F    | Search for determined t |
| R <u>ep</u> lace   | Ctrl+H    | Search and replace      |
| <u>G</u> o To      | Ctrl+G    | Go to Line              |
| Symbol             | Space     | Edit Symbol             |
| Variable           | V         | Edit Variable           |
| Label              | I         | Edit Label              |
| Description        | d         | Edit Description        |
| Properties         | Alt+Enter | Change Settings Edit \  |

nsert on to the page elect all elete the marked text earch for determined text earch and replace io to Line..... dit Symbol dit Variable dit Label dit Description Change Settings. Edit Variables

#### View:

| ✓ <u>I</u> oolbars<br>✓ <u>S</u> tatus Bar<br>✓ O <u>u</u> tput | Activate Toolbar<br>Activate Status list<br>Activate message window                |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------|
| Ty <u>p</u> e<br>✓ Sc <u>o</u> pe<br><u>R</u> emark             | Activate type in LAD<br>Activate scope in LAD<br>Activate remark in Ladder Diagram |
| <u>M</u> onitor Ctrl+M                                          | Activate monitor mode                                                              |
| Init Subroutine                                                 | Look at initialization sub routine                                                 |
| <u>Z</u> oom                                                    | Select zoom mode                                                                   |

Init Subroutine: Init subroutine: The Init subroutine is directly run only after the program start (after power failure, download, warmstart, coldstart). All init subroutines are still called up before the cyclic tasks.

#### Insert: (Insertion in Ladder diagrams)

| <u>N</u> etwork<br>Contact<br>Coil<br>Jump<br>Eunction<br>Analog Valu | Ctrl+Ins<br>F<br>f<br>Space | Insert new Network<br>Insert new contact<br>Insert new coil<br>Inset new Jump<br>Insert Functions Block<br>Insert analog value |
|-----------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| C <u>o</u> lumn                                                       | lns                         | Insert column                                                                                                                  |
| <u>R</u> ow                                                           | Shift+Ins                   | Insert row                                                                                                                     |

#### Open:

| Data <u>T</u> ypes  | Open data type manager    |
|---------------------|---------------------------|
| Library Manager     | Open library manager      |
| Ωbject              | Open active object        |
| <u>D</u> eclaration | Open variable declaration |
| <u>W</u> atch       | Open Watch (monitor)      |
| Tra <u>c</u> e      | Open tracer               |

#### Project:

| <u>B</u> uild<br>Build <u>A</u> ll<br><u>T</u> ransfer To Target                      | F7<br>Ctrl+F7<br>Ctrl+F5 |
|---------------------------------------------------------------------------------------|--------------------------|
| <u>O</u> pen Scheme<br>Sa <u>v</u> e Scheme<br>Invert Scheme<br>Reset Sche <u>m</u> e |                          |
| <u>S</u> ervices                                                                      | •                        |
| S <u>e</u> ttings                                                                     |                          |

Compile project (only changed files) Compile all files Download project to target Open scheme Save scheme

Invest scheme **Reset Scheme** Open Service sub-menu

General settings for the project

#### **Project: Service:**



Stop target Reset with warm start Reset with cold start Switch to diagnosis mode

Transfer operating system Clear memory

#### Object:



Rename the object Activate Debug Mode (C-Tasks) Transfer to..( RAM, USER ROM, FIXRAM .. ) Start Task Stop Task Variable force All variables in current Watch: Switch off Force Delete object from the controller Upload object from the controller Deactivation of the object

#### Tools:

Options...

Program settings

#### Window:

| <u>C</u> ascade                | Cascade window |
|--------------------------------|----------------|
| <u>T</u> ile                   | Tile window    |
| Arrange Icons                  | Arrange Icons  |
| ✓ <u>1</u> syein.GDM [Project] | Window list    |

#### Help:



Calls up online Use of the Automation Studio About Automation Studio

## LADDER DIAGRAM

| 1 | GEN | ERAL INFORMATION              | 2  |
|---|-----|-------------------------------|----|
|   | 1.1 | Programming languages         | 2  |
| 2 | LAD | DER DIAGRAM                   | 3  |
|   | 2.1 | Ladder diagram programming    | .4 |
|   | 2.2 | Program Test                  | 6  |
|   | 2.3 | Working with Function blocks. | 12 |
|   | 2.4 | Watch (PV- Monitor)           | 15 |

#### **1 GENERAL INFORMATION**

#### **1.1 Programming languages**

B&R provides the ideal programming language for every application and programmer preference. The spectrum comprises:

- Ladder diagram (LAD)
- Instruction List (IL)
- Structured Text (ST)
- Sequential Function Chart (SFC)
- B&R Automation Basic (AB)
- ANSI C

#### LAD The functionality of contact, logic, and function plan are all combined in LAD. Due to its similarity with circuit diagrams ladder diagrams are the easiest and most visual form of digital and analog programming.

- IL Instruction List is a machine based language that can be used to create logic connects in a similar way to LAD.
- ST This high level language is an easy to understand, high performance programming language for automation systems. Standard construction guarantees fast and efficient programming.
- SFC SFC is a programming language developed to dissect tasks into clearly organized sections. SFC is suited to processes reliant on a sequence of steps e.g. car washes
- AB This is a B&R high level language. It is easy to understand, high performance programming language designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming. Previously known as PL2000
- ANSI C High level language. High performance programming designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming.

#### 2 LADDER DIAGRAM

Ladder diagram corresponds to IEC1131-3 standards.

Standardized variable declaration and program processing applies to all programming languages. These include:

- Standard data types
- Individual variable declaration
- Implicit data conversion (exception is LAD)
- Additional functions for hardware service

Programming in Ladder diagram is extremely popular because of its

- Simple programming technique
- **Clarity** when searching for mistakes
- Size The LAD offers **50 columns and 50 lines per net**. The total number of nets is only restricted by the memory size of the computer.

#### Plausibility test

An online Plausibility test is available whilst programming. The following points should be noted while programming:

- Digital inputs are entered in to columns 1-49.
- Analog inputs are locked directly on to the FBKs
- Line and contact types checked for type similarity
- Unknown variables are declared immediately
- When saving or leaving the network another check is run for mistakes. This check will find any outstanding failing outputs, open lines, unlabeled contacts or function blocks without in/output parameters and alert the user to their presence

#### 2.1 Ladder diagram programming

The following contacts are possible:

| + | H | ł, | 小 | 4 | Pł | <br>N | ŀ | -IRA | ŀ | - | [ | } | $\langle \prime$ | Ŷ | {   | s)  | <br>(R) | ÷. | (P) | ŀ | (N    | }   | { <sup>6</sup> N | 6 | ЭЭНР | (RE | ¢, | F | ł | r <sup>1</sup> | I | (* | I | b: | . | + | <br>٠ | + | ŧ | (all |  |
|---|---|----|---|---|----|-------|---|------|---|---|---|---|------------------|---|-----|-----|---------|----|-----|---|-------|-----|------------------|---|------|-----|----|---|---|----------------|---|----|---|----|---|---|-------|---|---|------|--|
|   |   |    |   |   |    |       |   |      |   |   | • | e | 12               | · | - 1 | · * | • •     |    | • • |   | · · · | · . |                  | × |      |     |    | - |   | LL-            |   | •  |   |    |   |   | · ·   | т |   |      |  |

| <b> </b> | Normally Open<br>< <b>c&gt;</b>             | 1     | Normally Closed <i></i>                          | ┨┡┠ | Pos Trans<br>< <b>p&gt;</b>                      | <u></u> ₩ŀ | Neg Trans<br>< <b>n&gt;</b>                  |
|----------|---------------------------------------------|-------|--------------------------------------------------|-----|--------------------------------------------------|------------|----------------------------------------------|
| ᆌᆎ       | Trans<br><b><b></b></b>                     | ()    | Coil<br><b><shift><c></c></shift></b>            | (>) | Negated Coil<br><shift><i></i></shift>           | (s)        | Set Coil<br><b><shift><s></s></shift></b>    |
| (R)      | Reset Coil<br><b><shift><r></r></shift></b> | (P)   | Pos. Trans Coil<br><b><shift><p></p></shift></b> | (H) | Neg. Trans Coil<br><b><shift><n></n></shift></b> | (%)        | Trans. Coil<br><b><shift><b></b></shift></b> |
| ЭЭНР     | Jump<br>< <b>j</b> >                        | (REF) | Return <e></e>                                   | ₽   | Function Block                                   | ē          | Analog Value<br><space></space>              |
| (*       | Description <d></d>                         | B:    | Label<br><l></l>                                 |     |                                                  |            |                                              |
| +        | Line Left<br><alt><culeft></culeft></alt>   | +     | Line Right<br><alt><curight></curight></alt>     | +   | Line Up<br><b><alt><cuup></cuup></alt></b>       | +          | Line Down<br><alt><cudown></cudown></alt>    |
| 4        | Verify<br><b><enter></enter></b>            |       |                                                  |     |                                                  |            |                                              |

The Editor automatically shows the menu list when opening a Ladder Diagram. In addition the list can be activated or deactivated via the menu "**View: Toolbars**".

Example: Create the following Ladder diagram.



| Name       | Туре | Scope  | Attribute | Value      | Remark              |
|------------|------|--------|-----------|------------|---------------------|
| Movement   | BOOL | global | QP5.0.4.1 | * remanent | Dig. OUT, channel 1 |
| EndsClosed | BOOL | global | IP5.0.3.3 |            | Dig. IN, channel 3  |
| EndsOpen   | BOOL | global | IP5.0.3.4 |            | Dig. IN, channel 4  |
| E_stop     | BOOL | global | IP5.0.3.5 |            | Dig. IN, channel 5  |
| KeyClose   | BOOL | global | IP5.0.3.1 |            | Dig. IN, channel 1  |
| KeyOpen    | BOOL | global | IP5.0.3.2 |            | Dig. IN, channel 2  |

Create a project called "proj\_lad"

| Project name: | proj_lad |
|---------------|----------|
| LAD name:     | l_logic3 |
| Resource:     | C#3      |

#### 2.2 Program Test

After creating the task it is downloaded in to the CPU and should be tested as soon as possible.

The LAD – Monitor is the ideal tool for this.

# **View: Monitor: Monitor:** "View Monitor" or **<Control><M>** switches Automation Studio to monitor mode.

The LAD monitor is now displayed instead of the LAD editor.



Fig. 7.1: Ladder Diagram Monitor

#### 2.2.1 Functions of the LAD monitor.

The **right mouse** or Win95, Win98 Context button **<shift><F10>**, opens a pop up context menu. The monitor mode should be selected.



Fig.7.2: LAD Context menu

Display options

| "Туре"        | Displays the active variable         |
|---------------|--------------------------------------|
| "Scope"       | Displays active scope                |
| "Remark"      | Displays long text box               |
|               |                                      |
| "Binary"      | Displays binary values True or False |
| "Decimal"     | Displays decimal forms               |
| "Hexadecimal" | Display in HEX format                |
| "String"      | Display in ASCII characters          |
|               |                                      |
| "Force"       | Activates or deactivates force mode  |
| "Value"       | Changes a value                      |
|               |                                      |

The above options can be changed via the View menu.



Fig. 7.3: View Menu

The functions of the menu are the same as above apart from Init subroutine and zoom.

Init Subroutine: Displays the initialization program

Zoom: Changes the zoom factor.

#### Conditional Setting and Re-setting

It is often necessary to create a small impulse. Such impulses are created through buttons, switches, increment providers, etc.

The preset-function is used for conditional setting. **The output is set by a recognized 1-signal and remains set** until deleted by a new command.

| (s)<br>Set | Coil | Conditional Set | <shift><s></s></shift> |
|------------|------|-----------------|------------------------|
| Set        | Coll |                 |                        |

The reset-function is used for conditional delete. The output is deleted when a 1-signal is recognized.

| (R) Reset Coil | Conditional Reset | <shift><r></r></shift> |
|----------------|-------------------|------------------------|
|----------------|-------------------|------------------------|

Edges must be monitored in the form of input signal monitoring, for reasons of security, impulse counting etc. If the user wants to check a falling or increasing signal, the contact responsible is selected. After the contact an impulse remains.

| ᅯ┡┠ | Pos Trans | Pos. trans<br>reacts to rising edge  |         |
|-----|-----------|--------------------------------------|---------|
| 44  | Neg Trans | Neg. trans<br>reacts to falling edge | <n></n> |
|     | Trans     | Trans<br>reacts to both edges        | <b></b> |

If the request requires **memory space**, **independent of a task class cycle**, **the edge outputs** should be used.

| (P)                    | Pos. Trans. Coil | Pos. trans coil<br>reacts to rising edge  | <shift><p></p></shift> |
|------------------------|------------------|-------------------------------------------|------------------------|
| (N)                    | Neg. Trans. Coil | Neg. trans coil<br>reacts to falling edge | <shift><n></n></shift> |
| $\left( f_{k} \right)$ | Trans. Coil      | Trans. coil<br>reacts to both edges       | <shift><b></b></shift> |

Example: Program a connection with the output "RUN"

- The positive edge of input "START" sets output run.
- The negative edge of the input "STOP" stops output run.

| Name  | Туре | Scope  | Attribute | Value      | Remark              |
|-------|------|--------|-----------|------------|---------------------|
| RUN   | BOOL | global | QP5.0.4.2 | * remenant | Dig. OUT, channel 2 |
| START | BOOL | global | IP5.0.3.6 |            | Dig. IN, channel 6  |
| STOP  | BOOL | global | IP5.0.3.7 |            | Dig. IN, channel 7  |

Solve this task in your project PROJ\_LAD

| Project name: | proj_lad |
|---------------|----------|
| LAD name:     | l_logic4 |

Resource: C#3

To close the functions of the Ladder Diagram the following commands are important: Jump, Label, Return and Description.

| ЭЭНР  | Jump        | Conditional jump to labeled point    | <j></j> |
|-------|-------------|--------------------------------------|---------|
| B:    | Label       | Label target for jump.               | <br>d>  |
| (REF) | Return      | Move back to the next highest level. | <e></e> |
| (*    | Description | Description (commentary)             | <d></d> |

## Jump: Conditional jump to labeled point. If the connection for the jump is on **Logic 1**, then the jump will be carried out to this internal.

**B**: Label: Jump internal, Target for the Jump:

### Return: Conditional exit of a function.

A function can be a task but can also be a functions block. As a result it is possible to use a functions block within a Ladder Diagram.

### (\* Description: Comment:

Used for documentation of the Ladder Diagram. Should be available in every Ladder Diagram!

Example: Create the following LAD and test the functions.

First create the LAD in Fig. 7.4, then continue to develop the **LAD** to resemble Fig 7.5 and test it.





Fig. 7.5: expanded jump\_lad

| Name     | Туре | Scope  | Attribute  | Value      | Remark               |
|----------|------|--------|------------|------------|----------------------|
| Relay_9  | BOOL | global | QP5.0.4.9  | * remanent | Dig. OUT, channel 9  |
| Relay_10 | BOOL | global | QP5.0.4.10 | * remanent | Dig. OUT, channel 10 |
| Key_1    | BOOL | global | IP5.0.3.1  |            | Dig. IN, channel 1   |
| Key_2    | BOOL | global | IP5.0.3.2  |            | Dig. IN, channel 2   |

| Project name: | proj_lad |
|---------------|----------|
| LAD name:     | jump_lad |
| Resource:     | C#3      |

#### 2.3 Working with Function blocks.

Function block are in principle "black boxes" which present the user with complex functions represented in a graphical form to aid simplification.

The standard function blocks are always available.

| B&R Automatio                                           | n Studio - [k_ana.SRC [L     | adder Diagram]]                                |                                         | <u> </u> |
|---------------------------------------------------------|------------------------------|------------------------------------------------|-----------------------------------------|----------|
| <u></u> <u>₽</u> <u>F</u> ile <u>E</u> dit <u>V</u> iew | <u>Insert Open Project L</u> | adder O <u>bj</u> ect <u>T</u> ools <u>W</u> i | ndow <u>?</u>                           | _ 8 ×    |
| 🗋 🗁 🖬 🕼                                                 | X B B M M >                  | < 💕 🖆 🏄 🛸 💷                                    | 🔍 🚳 🤍 📎 🤶                               |          |
|                                                         |                              |                                                |                                         | المرا خ  |
|                                                         | Assign Data Type             |                                                |                                         | ? ×      |
| 0001                                                    | Category:                    | Assign item to:                                |                                         | <b></b>  |
|                                                         | Function blocks              |                                                |                                         |          |
| temp_1                                                  | · ·                          | -B LEFT                                        |                                         |          |
| global/IP5.0.5.1                                        | -                            | - 🐻 LEN                                        | Cance                                   |          |
| II                                                      | Array: 1                     | HE LIMIT                                       |                                         |          |
| 0002                                                    |                              | -®:LN                                          |                                         |          |
| 0002                                                    | Length: 80                   | -B LOG                                         |                                         |          |
| temp_1                                                  |                              | ⊢® LT                                          |                                         |          |
| global/IP5.0.5.1                                        | Info                         | HE MAX                                         |                                         |          |
|                                                         | Lib: STANDARD                |                                                |                                         |          |
|                                                         | Type: function               |                                                |                                         |          |
| temp_2                                                  | Scope: AVT                   | -B MOVE                                        |                                         |          |
| global/IP5.0.5.2                                        | IEUTI31-3: UUT :=            | - 🕮 MUL                                        | <b>T</b>                                |          |
|                                                         |                              | Filter:                                        |                                         | -        |
|                                                         |                              | мом                                            |                                         |          |
|                                                         |                              | J                                              |                                         |          |
| <b>T</b>                                                |                              |                                                |                                         |          |
|                                                         |                              |                                                |                                         |          |
| Output Debug                                            |                              |                                                |                                         |          |
| For Help, press F1                                      |                              |                                                | COM2 CP260 V2.10                        | BUN NUM  |
|                                                         |                              |                                                | , , , , , , , , , , , , , , , , , , , , |          |

Fig. 7.6: Function block selection



Fig. 7.7: LAD working with analog values

Example: The following example highlights the simplicity of working with functions blocks and analog values.

Entry and output of analog values in Ladder Diagram.

Analog input "TEMP1" -> Analog output "AV\_OUT1"

Analog input "TEMP2" -> Analog output "AV\_OUT2"

If TEMP1 >= TEMP2 an "output" should be set.

Function Block "GE".

| Name    | Туре | Scope  | Attribute  | Value      | Remark              |
|---------|------|--------|------------|------------|---------------------|
| AV_OUT1 | INT  | Global | QP5.0.6.1  | * remanent | Ana. OUT, channel 1 |
| AV_OUT2 | INT  | Global | QP5.0.6.2  | * remanent | Ana. OUT, channel 2 |
| TEMP1   | INT  | Global | IP5.0.5.1  |            | Ana. IN, channel 1  |
| TEMP2   | INT  | global | IP5.0.5.2  |            | Ana. IN, channel 2  |
| output  | BOOL | Global | QP5.0.4.14 | * remanent | Dig. OUT, Kanal 14  |

| Project name: | proj_lad |
|---------------|----------|
| LAD name:     | l_ana    |
| Resource:     | C#2      |

╞

Example: Create a turn on delay of 2 seconds with the help of the function block "TON\_10ms".



TON\_10ms:

Timer on Delay

The setting of IN causes the following to occur: the value of ET is raised every 10msecs to 1 until the value of PT is reached. After time is run through (PT = ET) the output Q is set.

- IN To delayed input
- Q Output
- PT Pre-set time
- ET Elapse time

| Name    | Туре | Scope  | Attribute | Value      | Remark           |
|---------|------|--------|-----------|------------|------------------|
| ELAPSE  | TIME | global | Memory    | * remanent | Elapsed time     |
| PRESET  | TIME | global | Memory    | * remanent | Pre-set time     |
| relay_5 | BOOL | global | QP5.0.4.5 | * remanent | Delayed EXIT     |
| Key_1   | BOOL | global | IP5.0.3.1 |            | To delayed input |

| Project name: | proj_lad |
|---------------|----------|
| LAD name:     | l_ton    |
| Resource:     | C#2      |

#### 2.4 Watch (PV- Monitor)

#### **Open: Watch:**

The PV monitor can be opened via the menu :**Open Watch**, or by clicking on an object with the **right mouse** button.



Fig. 7.8: PopUp Watch



Variables can be called up in the dialog box.

| 🗃 B&R Automation Studio - [l_ton [Watch] ]                                                    |                              |                      | _ 🗆 ×      |
|-----------------------------------------------------------------------------------------------|------------------------------|----------------------|------------|
| 🏹 <u>File E</u> dit <u>V</u> iew Insert <u>O</u> pen <u>P</u> roject O <u>bj</u> ect <u>I</u> | ools <u>W</u> indow <u>?</u> |                      | _ & ×      |
| N C III                                                                                       |                              | <u>?</u> X           |            |
| Name                                                                                          | Туре                         |                      |            |
| <u>♦ Key_1</u>                                                                                | BOOL                         | Add                  |            |
| PresetTime                                                                                    | UDINT                        | Cancel               |            |
| Relay_5                                                                                       | BOOL                         |                      |            |
|                                                                                               | DATA TYPE                    | _                    |            |
| et                                                                                            | UDINT                        |                      |            |
| XIII                                                                                          |                              |                      | Participal |
| * Transfe                                                                                     |                              | _                    |            |
|                                                                                               |                              |                      |            |
| For Help, press FI                                                                            |                              | LUMT JLP260 V2.10 JF | IUN ///    |

Fig. 7.10: Watch: Variable Selection

### 📕 Object: Force:

I/Os can be forced, and consequently values can be saved in the memory.

Input (forcing possible)Output (forcing possible)

When changing the variables a security box will appear, after which the variable will be forced. As shown below:

**Object: Force all off:** Switch off all forcing:

| 🞕 B&R Automation Studio - [l_ton [Watch] | _ton]                                     |                |                  |        |  |  |  |
|------------------------------------------|-------------------------------------------|----------------|------------------|--------|--|--|--|
| 🂐 Eile Edit ⊻iew Insert Open Project O   | <u>bj</u> ect <u>T</u> ools <u>W</u> indo | ow <u>?</u> wo |                  | _ 8 ×  |  |  |  |
| D 📽 🖬 🕼   X 🛍 💼   M m   X                | ( 6   f 2 4                               | E   🔍          | 🛍 🤍 父 🦹          |        |  |  |  |
| 🆄 😂 🖬 🖳 🖏 🖉 🕩 💽 🕷                        | 🔊 🔆   2# 8# 10                            | # 16# abd      |                  |        |  |  |  |
| Name                                     | Туре                                      | Force          | Value            |        |  |  |  |
| ♦ Key_1                                  | BOOL                                      | ×              | TRUE             |        |  |  |  |
| PresetTime                               | UDINT                                     |                | 200              |        |  |  |  |
| Relay_5                                  | BOOL                                      |                | TRUE             |        |  |  |  |
| 💊 et                                     | UDINT                                     |                | 0                |        |  |  |  |
| 🗆 🕒 TON_1                                | TON_10ms                                  |                |                  |        |  |  |  |
| ⊢♦ IN                                    | BOOL                                      |                | TRUE             |        |  |  |  |
| ⊢♦ PT                                    | UDINT                                     |                | 200              |        |  |  |  |
| -♦ Q                                     | BOOL                                      |                | TRUE             |        |  |  |  |
| ⊢♦ ET                                    | UDINT                                     |                | 0                |        |  |  |  |
| - ♦ StartTime                            | UDINT                                     |                | 0                |        |  |  |  |
| ∟∿м                                      | BOOL                                      |                | TRUE             |        |  |  |  |
|                                          |                                           |                |                  |        |  |  |  |
| X * Transferring l_ton ok                |                                           |                |                  | A<br>V |  |  |  |
| Uutput Debug Find in Files               |                                           |                |                  |        |  |  |  |
| For Help, press F1                       |                                           |                | COM1 CP260 V2.10 | RUN    |  |  |  |

Fig. 7.11: Watch Window

Example: With the previous example of a TON function Block:

- Test Watch
- Test Force

**View:** Archive: Activates/deactivates archive mode.

The values can be downloaded to the CPU with the **Object: Write** Values" button or "Object: Write Value" menu.

Supplementary altered values are displayed in a different color. It is therefore simple to see the difference between saved work and current work.

| B&B Automation Studio - [] ton [Watch] | l ton]                   |            |                                              |
|----------------------------------------|--------------------------|------------|----------------------------------------------|
| 💸 File Edit View Insert Open Project O | bject Tools Wind         | ow ?       | _ B ×                                        |
|                                        | - <u></u><br>< 🖻   Ľ 🗹 🗳 | -<br>-     | <br>() () () () () () () () () () () () () ( |
| 🍬 😅 🖬 🎭 🖏 🕩 🕞 🕽                        | 5 😿 2# 8# 10             | )# 16# abc |                                              |
| Name                                   | Туре                     | Force      | Value                                        |
| ♦ Key_1                                | BOOL                     | 🖫 🔀        | TRUE                                         |
| PresetTime                             | UDINT                    | H          | 200                                          |
| ♦ Relay_5                              | BOOL                     | 🖫 🥏        | TRUE                                         |
| 💊 et                                   | UDINT                    | <b>.</b>   | 0                                            |
| 🗆 🕒 TON_1                              | TON_10ms                 |            |                                              |
| ⊢♦ IN                                  | BOOL                     | -          | TRUE                                         |
| ⊢♦ PT                                  | UDINT                    | -          | 200                                          |
|                                        | BOOL                     |            | TRUE                                         |
| ⊢♦ ET                                  | UDINT                    |            | 0                                            |
| ⊢♦ StartTime                           | UDINT                    | -          | 0                                            |
| ∟∿ м                                   | BOOL                     |            | TRUE                                         |
|                                        |                          |            |                                              |
| X * Transferring l_ton ok              |                          |            | A<br>V<br>F                                  |
| U Output Debug Find in Files           |                          |            |                                              |
| For Help, press F1                     |                          |            | COM1 CP260 V2.10 RUN                         |

Fig. 7.12: Watch window archive Mode





Fig. 7.13: Save Dialog

**Object: Load Data:** Load dialog



Fig. 7.14: Load Dialog

This dialog box enables the user to save the current value to the hard disk.

A watch window is loaded.

If the configuration is saved in the Archive mode the machine will revert (after a security check) to its previous settings. The data will be downloaded to the PCC only upon request.

Example: Secure a current variable image for configuration of a machine belonging to a customer.

- Secure values (archive)
- Change the values on the controller (watch)
- Download secured values from the hard disk to the controller (archive)

#### Watch Toolbar:

| * | 🖻 🔒 | <b>B</b> |  | 🗈 🖟 | 10 💥 | 2# | 8# 10# | 16# | abo |
|---|-----|----------|--|-----|------|----|--------|-----|-----|
|---|-----|----------|--|-----|------|----|--------|-----|-----|

| Insert Variable                       | Open Data<br>Archive Mode                                                      | Save Data<br>Archive Mode               |
|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| Archive Mode<br>activate / deactivate | Write Values<br>Download values to<br>PCC                                      |                                         |
| Stop<br>Task or PCC stop              | Start<br>When total cycles=0, it<br>will be switched in the<br>cycle operation | Set Cycle Count<br>Set number of cycles |
| Run Cycle<br>Do number of cycles      | Force On/Off<br>Force I/O variables<br>ON/OFF                                  | Force All Off                           |
| <b>2</b> # Display as Binary          | 8# Display as Octal                                                            | 10# Display as Decimal                  |
| 16# Display as HEX                    | bisplay value as text                                                          |                                         |

Pop Up Menu: Click with right mouse button in Watch window:

| Insert Variable                                           | Insert variable                                                                              |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Binary Detal Decimal Hexadecimal String                   | Binary display<br>Octal display<br>Decimal display<br>Hexadecimal display<br>Display as text |
| <u>S</u> tart<br>Stop<br><u>C</u> ycle<br>✔ <u>F</u> orce | Start<br>Stop<br>Cycle<br>Force                                                              |

## **INSTRUCTION LIST**

| 1 | GEN  | ERAL INFORMATION      | 2  |
|---|------|-----------------------|----|
|   | 1.1  | Programming languages | 2  |
| 2 | INST | TRUCTION LIST         | 3  |
|   | 2.1  | IL Construction       | 3  |
|   | 2.2  | IL Monitor            | 10 |

#### **1 GENERAL INFORMATION**

#### **1.1 Programming languages**

B&R provides the ideal programming language for every application and programmer preference. The spectrum comprises:

- Ladder diagram (LAD)
- Instruction List (IL)
- Structured Text (ST)
- Sequential Function Chart (SFC)
- B&R Automation Basic (AB)
- ANSI C
- LAD The functionality of contact, logic, and function plan are all combined in LAD. Due to its similarity with circuit diagrams ladder diagrams are the easiest and most visual form of digital and analog programming.

## IL Instruction List is a machine based language that can be used to create logic connects in a similar way to LAD.

- ST This high level language is an easy to understand, high performance programming language for automation systems. Standard construction guarantees fast and efficient programming.
- SFC SFC is a programming language developed to dissect tasks into clearly organized sections. SFC is suited to processes reliant on a sequence of steps e.g. car washes.
- AB This is a B&R high level language. It is easy to understand, high performance programming language designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming. Previously known as PL2000.
- ANSI C High level language. High performance programming designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming.
#### **2 INSTRUCTION LIST**

#### 2.1 IL Construction

| Label | Operator | Operand  | Comment                         |
|-------|----------|----------|---------------------------------|
| JUMP: | LD       | temp_set | (* load set temperature value*) |

Label An identifier (name of the label) must be closed with a colon and be preceded by an IL instruction.

Labels are optional and can stand alone in lines. A label can be a maximum of 32 characters long.

Operator All instructions (operators) are run by an Accumulator (accu). The length of the accu implicitly matches the operands used and fall in the range BOOL to REAL.

#### Operands

Process variables or value assignments can be used as operands.

Process variable as Operand: Entered as a symbolic name. Value assignment as Operand: Value entries are numerical.

| 100         | <br>decimal     |
|-------------|-----------------|
| 2#1000_1001 | <br>boolean     |
| 16#2FA89E2C | <br>hexadecimal |
| 1.25        | <br>real        |

Basic operations have only one operand.

#### Comment

Text is identified as comments in the following way: (\* Start End \*)

Empty spaces are allowed in the source.

A comment can not cover several lines.

# Instructions

An operator can either be a **Code word** (IL command) or a **Function name** (calling a function block).

| Instructions |                     |     |               |  |  |  |
|--------------|---------------------|-----|---------------|--|--|--|
| LD           | Accu = Operand (Op) | LDN | Accu = not Op |  |  |  |
| ST           | Op = Accu           | STN | Op = not Accu |  |  |  |
| S            | Preset Op           | R   | Reset Op      |  |  |  |

| Logic Connections |                    |      |                        |  |  |  |
|-------------------|--------------------|------|------------------------|--|--|--|
| AND               | Accu = Accu and Op | ANDN | Accu = Accu and not Op |  |  |  |
| OR                | Accu = Accu or Op  | ORN  | Accu = Accu or not Op  |  |  |  |
| XOR               | Accu = Accu xor Op | XORN | Accu = Accu xor not Op |  |  |  |

| Arithmetic Connections |                                                                                                                                          |     |                  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--|--|
| ADD                    | $\mathbf{DD}  \mathbf{Accu} = \mathbf{Accu} + \mathbf{Op} \qquad \qquad \mathbf{SUB} \qquad \mathbf{Accu} = \mathbf{Accu} - \mathbf{Op}$ |     |                  |  |  |
| MUL                    | Accu = Accu * Op                                                                                                                         | DIV | Accu = Accu / Op |  |  |

| Compare Commands |            |    |            |  |  |
|------------------|------------|----|------------|--|--|
| GT               | Accu > Op  | LT | Accu < Op  |  |  |
| GE               | Accu >= Op | LE | Accu <= Op |  |  |
| NE               | Accu <> Op | EQ | Accu = Op  |  |  |

| Jump Command |                                                                                                      |     |             |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------|-----|-------------|--|--|--|
| JMPC         | $\mathbf{MPC}  \text{Jump when Accu } <> 0 \qquad \qquad \mathbf{JMPCN}  \text{Jump when Accu } = 0$ |     |             |  |  |  |
| JMP          | Unconditional Jump                                                                                   | CAL | Call an FBK |  |  |  |

# Example: Logic Connection



The solution clearly shows that logic programming in IL is very simple.

| LD   | Key_1   | (*  | Accu = Key_1           | *) |
|------|---------|-----|------------------------|----|
| OR   | Relay_2 | ( * | Accu = Accu OR Relay_2 | *) |
| ANDN | Key_2   | (*  | Accu = Accu ANDN Key_2 | *) |
| ST   | Relay_2 | (*  | Relay_2 = Accu         | *) |

# Working with Brackets

Enclosing instructions with explicit brackets enables programming to be carried out without buffer memory.



| LD   | KeyOpen    | (*  | Accu = KeyOpen                   | *) |
|------|------------|-----|----------------------------------|----|
| ANDN | Ends0pen   | (*  | Accu = Accu AND NOT EndsOpen     | *) |
| OR ( | KeyClose   | (*  | Accu <sup>#</sup> = KeyClose     | *) |
| ANDN | EndsClosed | ( * | Accu# = Accu# AND NOT EndsClosed | *) |
| )    |            | (*  | End brackets                     | *) |
|      |            | (*  | Accu = Accu OR Accu <sup>#</sup> | *) |
| ANDN | E_stop     | (*  | Accu = Accu AND NOT E_stop       | *) |
| ST   | Movement   | (*  | Move = Accu                      | *) |

If the compiler recognizes a bracket a second accu (accu<sup>#</sup>) is opened that is linked to the main accu after the bracket is closed.

A maximum of 7 bracket layers can be created.

Example: Create the following circuit diagram in IL.



| Project name: | proj_il  |
|---------------|----------|
| Program name: | i_logic1 |
| Resource:     | Cyclic#4 |

Something extra for you to consider:

• What should you look out for with variable declaration ?

### 2.1.1 Working with Function Blocks

#### CAL calls FBKs.

Example: Create a switching delay of 2.56 seconds.



- CAL TON\_1(IN := Input, PT := 0256)
- LD TON\_1.Q
- ST Output

All input parameters are given at the end of the FBK name. Output variables can be called using the alias names TON\_1.Q.

Always note the text type and sequence of the parameters to be carried out, and all the input parameters !

Example: Create a switching off delay of x seconds with the help of FBK **tof**, in which an analog input is divided by 100 and the TOF is given as a PT time.



Parameter:

- PT ... Preset time in 10msecs
- Q ... Output
- ET ... Elapsed time
- Function: By resetting "IN" the "PT" value is decremented by 1 every 10msec and saved as "ET". "Q" is deleted when the time has elapsed .
- Information: The data type conversion from INT to UDINT can be carried out using the function INT\_TO\_UDINT.

| Name   | Туре  | Scope  | Attribute | Value      | Remark                |
|--------|-------|--------|-----------|------------|-----------------------|
| Input  | BOOL  | global | IP5.0.3.1 |            | digital IN channel 1  |
| Output | BOOL  | global | QP5.0.4.3 |            | digital OUT channel 3 |
| AvIN   | INT   | global | IP5.0.5.1 |            | AV for time           |
| Time   | UDINT | local  | memory    | * remanent | Preset time for TOF   |

Project name: proj\_il Program name: i\_tofdel Resource: Cyclic#3

## 2.2 IL Monitor

The variables are displayed directly in Monitor mode in the text editor. Double click on the variable to change it.

The Watch window is also available for IL tasks.

| 🚳 B&R Automation Studio - [i_logic1.src [Inst                                                                                                                                                                                                                                                                                                                             | truction list]                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ii) <u>File Edit View Insert Open Project D</u> ebr                                                                                                                                                                                                                                                                                                                       | oug O <u>bj</u> ect Iools <u>W</u> indow <u>?</u>                                                 |
| 🗋 🗅 😅 🖬 🕼 👗 🛍 💼 🗠 🗠 🗙 I                                                                                                                                                                                                                                                                                                                                                   | 🗃 l´ d 🕸 🛃 🔍 🐚 🛇 🔗 🔋 🖶 🏀 I Pr Pr                                                                  |
| A & A   D   2# 10# 16#                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |
| 0001 (* cyclic program *)                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   |
| D002           D003         LD         Key_1           0004         OR         Key_3           0005         AND         Key 2           0006         OR (TRUE)           0007         ANDN         Key_4           0008         AND         Key_5           0009         )         0010           0011         0012         0013           0014         O014         O014 | Key_1 = FALSE<br>Key_3 = FALSE<br>Key_2 = FALSE<br>Key_4 = FALSE<br>Key_5 = TRUE<br>Pump_1 = TRUE |
| 0015                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |
| For Help, press F1                                                                                                                                                                                                                                                                                                                                                        | Ln 1, Col 1 JCUM1 JCP260 V2.10 JRUN J //                                                          |

Fig. 8.1: IL in Monitor Mode



Example: Test your IL tasks using the monitor functions:

- IL Monitor
- Watch Window

# STRUCTURED TEXT

| 1 | GEN | VERAL INFORMATION            | 2  |
|---|-----|------------------------------|----|
|   | 1.1 | Programming languages        | 2  |
| 2 | OVE | ERVIEW                       | 3  |
| 3 | PRO | OGRAMMING                    | 4  |
|   | 3.1 | Operator Priorities          | 4  |
|   | 3.2 | Logic Connections            | 5  |
|   | 3.3 | Arithmetic Operations        | 7  |
|   | 3.4 | Trace:                       | 11 |
|   | 3.5 | Logic Compare Expressions    | 17 |
|   | 3.6 | Conditions                   |    |
|   | 3.7 | Case Statement               | 25 |
|   | 3.8 | Loops                        | 27 |
|   | 3.9 | Working with Function Blocks | 31 |
| 4 | SUM | MMARY                        | 33 |

## **1 GENERAL INFORMATION**

#### **1.1 Programming languages**

B&R provides the ideal programming language for every application and programmer. The spectrum comprises:

- Ladder diagram (LAD)
- Instruction List (IL)
- Structured Text (ST)
- Sequential Function Chart (SFC)
- B&R Automation Basic (AB)
- ANSI C
- LAD The functionality of contact, logic, and function plan are all combined in LAD. Due to its similarity with circuit diagrams, ladder diagrams are the easiest and most visual form of digital and analog programming.
- IL Instruction List is a machine based language that can be used to create logic connects in a similar way to LAD.
- ST This high level language is an easy to understand, high performance programming language for automation systems. Standard construction guarantees fast and efficient programming.
- SFC SFC is a programming language developed to dissect tasks into clearly organized sections. SFC is suited to processes reliant on a sequence of steps e.g. car washes.
- AB This is a B&R high level language. It is easy to understand, high performance programming language designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming. Previously known as PL2000.
- ANSI C High level language. High performance programming designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming.

#### **2 OVERVIEW**

Lets take a closer look at Structured Text (abbr: ST).

ST is a text high level language.

ST language contruction corresponds to IEC1131-3.

Programming languages make the control tasks much easier to program, programs created in ST can be displayed with great clarity.

Unrecognized variables are defined immediately after use.

ST programming command groups:

- Logic Connections
- Arithmetic Operations
- Logic Compare Expressions
- Conditions
- Loops
- Select

#### **3 PROGRAMMING**

#### **3.1 Operator Priorities**

Using more than one operator in a line automatically triggers the question of priorities.

| Operation              | Symbol                           | Precedence         |
|------------------------|----------------------------------|--------------------|
| Brackets               | 0                                | highest precedence |
| Function call          | ID                               |                    |
| Example:               | (argument list)<br>LN(A), MAX(X) |                    |
| Potentiation           | EXPT(IN1,IN2)                    |                    |
| Negation<br>Complement | NOT                              |                    |
| Multiplication         | *                                |                    |
| Division<br>Modulo     | /<br>MOD                         |                    |
| Addition               | +                                |                    |
| Subtraction            | -                                |                    |
| Compare                | <, >, <=, >=                     |                    |
| Equal to               | =                                |                    |
| Unequal to             | $\diamond$                       |                    |
| Boolean AND            | AND                              |                    |
| Boolean Exclusive Or   | XOR                              |                    |
| Boolean OR             | OR                               | lowest priority    |

As shown above, bracketing operators can influence the order of precedence.

| Example: | Event = $6 + 7 * 5 - 3$   | (result = 38) |
|----------|---------------------------|---------------|
|          | Event = (6 + 7) * (5 - 3) | (result = 26) |

The order of precedence states that multiplication and division have higher priority than addition and subtraction. Brackets (highest priority) can be used to influence the order of precedence.

# **3.2 Logic Connections**

| Symbol | Logic Connection | Example       |
|--------|------------------|---------------|
| NOT    | Negation         | a := NOT b;   |
| AND    | logic AND        | a := b AND c; |
| OR     | logic OR         | a := b OR c;  |
| XOR    | exclusive OR     | a := b XOR c; |

Logic operators are bit orientated during programming!

Example:



| Name    | Туре | Scope  | Attribute | Value      | Remark              |
|---------|------|--------|-----------|------------|---------------------|
| in_1    | BOOL | global | 20xx-I/O  |            | Dig. IN, channel 1  |
| in_2    | BOOL | global | 20xx-I/O  |            | Dig. IN, channel 2  |
| in_3    | BOOL | global | 20xx-I/O  |            | Dig. IN, channel 3  |
| in_4    | BOOL | global | 20xx-I/O  |            | Dig. IN, channel 4  |
| Motor_1 | BOOL | global | 20xx-I/O  | * remanent | Dig. OUT, channel 1 |

Motor\_1 := (in\_1 AND (NOT in\_2 OR in\_3)) OR in\_4;

The ST editor allows any number of parallel branches.







| Name    | Туре | Scope | Attribute | Value | Remark              |
|---------|------|-------|-----------|-------|---------------------|
| Relay_2 |      |       | •••••     |       | Dig. OUT, channel 2 |
| key_5   |      |       | •••••     |       | Dig. IN, channel 5  |
| key_6   |      |       | •••••     |       | Dig. IN, channel 6  |
| key_7   |      |       |           |       | Dig. IN, channel 7  |
| key_8   |      |       |           |       | Dig. IN, channel 8  |
| key_9   |      |       |           |       | Dig. IN, channel 9  |

Project name:proj\_stTask name:s\_logicResource:C#3

# **3.3** Arithmetic Operations

A deciding factor in using high level programming languages is the simplicity in programming arithmetic operations.

ST offers all fundamental arithmetic functions such as:

| Symbol | Arithmetic Operations | Example       |
|--------|-----------------------|---------------|
| :=     | Assign                | a := b;       |
| +      | Addition              | a := b + c;   |
| -      | Subtraction           | a := b - c;   |
| *      | Multiplication        | a := b * c;   |
| /      | Division              | a := b / c;   |
| mod    | whole number division | a := b mod c; |

The data type is an important factor when doing calculations.

| Example: | Event | := 8/3; |         |    |  |
|----------|-------|---------|---------|----|--|
|          | Rest  | :=      | 8 mod 3 | 3; |  |

| Data type: | Real   | Integer |
|------------|--------|---------|
| Event:     | 2,6667 | 2       |
| Rest:      | 2,0000 | 2       |

Information: If you want to work with constant REAL values, a minimum of one semicolon must be used (example: 3 .. INT; **3.0 .. REAL**) Data Type Conversion:

If different data types are used during an operation, the compiler automatically carries out an **implicit data type conversion**:

| Data Type | BOOL | SINT  | INT   | DINT  | USINT | UINT  | UDINT | REAL |
|-----------|------|-------|-------|-------|-------|-------|-------|------|
| BOOL      | BOOL | Х     | х     | Х     | Х     | Х     | Х     | Х    |
| SINT      | х    | SINT  | INT   | DINT  | USINT | UINT  | UDINT | REAL |
| INT       | Х    | INT   | INT   | DINT  | INT   | UINT  | UDINT | REAL |
| DINT      | Х    | DINT  | DINT  | DINT  | DINT  | DINT  | UDINT | REAL |
| USINT     | Х    | USINT | INT   | DINT  | USINT | UINT  | UDINT | REAL |
| UINT      | Х    | UINT  | UINT  | DINT  | UINT  | UINT  | UDINT | REAL |
| UDINT     | Х    | UDINT | UDINT | UDINT | UDINT | UDINT | UDINT | REAL |
| REAL      | Х    | REAL  | REAL  | REAL  | REAL  | REAL  | REAL  | REAL |

 $\times$  .... explicit conversion required according to the operation.

Example 2: Adding an INT value and a SINT value
Event := value1 + value2;

- The smaller value is implicitly matched to INT!
- The result must also be an INT value!

Procedure:

- Always converted to bits.
- If the variables are the same size they are converted to unsigned.

Information: Relationship between type and bit width:

| SINT | <br>8 BIT  | "S" means short           |
|------|------------|---------------------------|
| INT  | <br>16 BIT | No special text type      |
| DINT | <br>32 BIT | " <b>D</b> " means double |

Example 3: Adding 2 temperatures (must be INT !)

Average := (Temp1 + Temp2) / 2;

- Problem: The sum of both temperatures can easily exceed the positive INT range (+32,767), which would lead to a false (negative) average value.
- Solution: If the PVs cannot be added to the effect you want without causing overflow they must be **explicitly converted**. This is done with the help of the STANDARD library.

The functions are contructed as follows.

x .. output data type

y .. target data type

x\_TO\_y e.g. BOOL\_TO\_DINT(bool\_var)

The correct solution is found by following the steps below:

- Convert variable Temp1 to DINT. (Compiler executes the lines from left to right).
- The second value is adjusted implicitly.

(INT\_TO\_DINT(Temp1) + Temp2) / 2

DINT is converted back to INT so that the analog value can be processed. So the program can be easily understood in years to come, you should convert every "Temp" value explicitly.

```
Average := DINT_TO_INT( (INT_TO_DINT(Temp1) +
INT_TO_DINT(Temp2) ) / 2);
```

Example: The room temperature for a large office is recorded at three points. Your task is to calculate the arithmetic average of these 3 temperatures.

| Name    | Туре | Scope | Attribute | Value | Remark               |
|---------|------|-------|-----------|-------|----------------------|
| Average |      |       | •••••     | ••••  | Analog OUT, chan1    |
| Temp1   |      |       | •••••     | ••••• | Analog IN, channel 1 |
| Temp2   |      |       |           |       | Analog IN, channel 2 |
| Temp3   |      |       |           |       | Analog IN, channel 3 |

| Project name: | proj_st  |
|---------------|----------|
| Task name:    | s_arithm |
| Resource:     | C#4      |

#### 3.4 Trace:

The trace function displays the value directly on the controller.

The upload function takes the values from the controller and displays them in various windows.

This function makes it possible to record values from different task classes in a specifically defined time sequence.

The smallest unit of time is the task class cycle time.

The value can be recorded at the start or end of a task.

Up to 8 values can be recorded simultaneously.



Fig. 9.1: Task Trace PopUp

Insert: Trace: Inserts a trace configuration

Insert: Variable: Inserts variables in the trace configuration

Use the following dialog to insert up to 8 variables.

| B&R Automation Studio                                   | - [s_ar      | ithm]                             |                 | _ [          | JN   |
|---------------------------------------------------------|--------------|-----------------------------------|-----------------|--------------|------|
| 🔄 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert | <u>O</u> pen | Project <u>Trace</u> <u>Tools</u> | ⊻indow <u>?</u> |              | ١×   |
|                                                         | e.L          | ചെപ്× ലിറ്⊿                       | / 🕸 🗐 🔍 🕋 🕥 🔗   | λ <b>?</b>   |      |
|                                                         | elect        | Trace Variable                    |                 |              | ×    |
|                                                         |              |                                   | 1               | _            | —L   |
| Name                                                    | Name         | •                                 | Туре            | Select       | μ    |
| E S TARGET_CONFIGUR                                     | E            | s_arithm                          | TASK            |              |      |
| Mittelw                                                 | - \$1        | Mittelw                           | INT             | Cancel       |      |
|                                                         |              | Temp1                             | INT             |              |      |
|                                                         |              | Temp2                             |                 | _            |      |
|                                                         | l 🔆          | Temp3                             | INI             |              |      |
|                                                         | ⊢.∼          | init                              | BUUL            |              |      |
|                                                         | ⊢•           | wen                               |                 | -            |      |
|                                                         |              |                                   |                 |              | E    |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              | Ē    |
| * Compiling s_ar                                        |              |                                   |                 |              |      |
| T Compiling s ar                                        |              |                                   |                 |              |      |
| -0 FLLOF(S) - 0 (                                       |              |                                   |                 |              |      |
|                                                         |              |                                   |                 |              |      |
| 11 Output Debug                                         |              |                                   |                 |              |      |
| For Help, press F1                                      |              |                                   | COM2 CP260      | V2.10 RUN NU | 1 7/ |

Fig. 9.2: Trace Select Variables

INFO BURST: The monitor mode successfully installed.

# 🔊 Trace: Install:

Trace is installed on the controller. The trace automatically enters the variables in the memory module. The start point or the recording point can be configured by you.

Use Start 📓 and Stop 📓 to start and stop the tracer.

# Trace: Show Target Data:

When the tracer is in stopped, the "Show Target Data" can be loaded from the controller.



Fig. 9.3: Tracer Display Window

Click on the right mouse button and access various settings under "Display" or "Modify". For example, activate "Curve Cursor" and "Reference Cursor".

| Trace control properties           Chart control colors         Chart control styles                                                                                                                                                               |        |                                                                  |         |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|---------|---------------------|
| <ul> <li>✓ All curves</li> <li>All x axis labels</li> <li>✓ All y axis labels</li> <li>✓ Grid</li> <li>✓ One x axis label</li> <li>One y axis label</li> <li>Reference Cursor</li> <li>✓ Split bars</li> <li>✓ Titles</li> <li>✓ Titles</li> </ul> | y unit | P<br>Chai<br>100.0<br>80.0<br>60.0<br>40.0<br>20.0<br>0.0<br>0.0 | review: | x unitname<br>0.000 |
|                                                                                                                                                                                                                                                    |        | ОК                                                               | Cancel  | Apply               |

Fig. 9.4: Tracer Settings

The cursor serves as a measurement reference point on the curve.



Fig. 9.5: Tracer Measurement Mode

# **Q Tracer: Zoom:**

The zoom factor can be selected. This allows the opportunity to analyise target data in greater detail.



Fig. 9.6: Tracer Zoom in on the Curve



Example: Test the Tracer

Information: In order to set the right value range, turn the analog value up to the maximum and minimum values.

# **3.5 Logic Compare Expressions**

High level programming languages such as ST enable the simple construction of branches for compare operations.

| Symbol | Logic Compare Expressions | Example                |
|--------|---------------------------|------------------------|
| =      | Equal to                  | IF $a = b$ THEN        |
| <>     | Not equal to              | IF a <> b THEN         |
| >      | Greater than              | IF $a > b$ THEN        |
| >=     | Greater than or equal to  | IF a >= b THEN $\dots$ |
| <      | Less than                 | IF a < b THEN          |
| <=     | Less than or equal to     | IF a <= b THEN         |

# **3.6 Conditions**

| Conditions | Example                | Description             |
|------------|------------------------|-------------------------|
|            | a := b * c;            | calculation             |
| IF         |                        | Start Instruction       |
| THEN       | IF a > 0 THEN          |                         |
|            | result := 1;           | condition fulfilled     |
| ELSE       | ELSE                   |                         |
|            | <pre>result:= 0;</pre> | condition not fulfilled |
| END_IF     | END_IF                 | End of instruction      |

- Compare is **true** -> do **THEN branch**
- Compare is **false** -> do **ELSE branch**

The **ELSE branch** of an IF instruction is **not conclusive**, meaning that when the compare result is fasle -> **END\_IF** 

| Program           | Description         |  |
|-------------------|---------------------|--|
| IF condition THEN | IF statement        |  |
| statement block   | condition is true   |  |
| statement block   |                     |  |
| ENDIF             | End of the IF block |  |

#### INIT Value

We should spend some quality time thinking about INIT values. There are two ways of initializing a process variable with a specific value:

- Program value assignment Initialization data is programmed in the INIT SP.
- Declared value assignment The initialization data is assigned directly to in the variable declaration of the value chosen as remanent or 0.
- INIT SP The INIT SP is programmed in the same way as the task section. Only one task is executed that must be executed **once before all others**, such as:
  - Assigning values to process variables.
  - System or machine tasks, that must be executed once and before all other tasks.

The INIT SP is called like this:

## Position the **Cursor in the Task Source code**. **View : Init Subroutine**

Or move the "Splitter Bar" from the top of the window to the bottom.

| 0001 (* init program *)        | Splitter Bar: can be |
|--------------------------------|----------------------|
| 0002 heat := 0:                | Splitter Buil eun ee |
| 10003 TempSet := 200:          | moved down using the |
|                                | moved down using the |
|                                |                      |
|                                | mouse.               |
| 0001 (* cyclic program *)      |                      |
| 0002                           |                      |
| 0003 IF Templet < TempSet THEN |                      |
| 0004 heat := 1;                |                      |
| 0005 ELSE                      |                      |
| 0006 heat := 0                 |                      |
| 0007 END IF                    |                      |
| 0008                           |                      |
| 0009                           |                      |
| 0010                           |                      |
| 0011                           |                      |
|                                |                      |

Fig. 9.7: Init SP in ST Task

#### **IMPORTANT**

- The INIT SPs of **all** tasks are executed in the defined order before the cyclic tasks.
- Remanent value assignments to function block variables can be carried out entirely within the INIT SP.
- All inputs and outputs are available in the Init SP.
- The Init SP does not monitor cycle time.

#### 3.6.1 INIT VALUES in the Variable Declaration

| Туре | Scope                      | Attribute                                                                     | Value                                                                                                                                                                    | Remark                                                                                                                                                                                                                                   |                                                                                                   |
|------|----------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| INT  | global                     | memory                                                                        | * remanent                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                   |
| INT  | global                     | memory                                                                        | 300                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                   |
| BOOL | local                      | memory                                                                        | * remanent                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                   |
|      |                            |                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                   |
|      |                            |                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                   |
|      | Type<br>INT<br>INT<br>BOOL | Type     Scope       INT     global       INT     global       BOOL     local | Type         Scope         Attribute           INT         global         memory           INT         global         memory           BOOL         local         memory | Type         Scope         Attribute         Value           INT         global         memory         * remanent           INT         global         memory         300           BOOL         local         memory         * remanent | TypeScopeAttributeValueRemarkINTglobalmemory* remanentINTglobalmemory300BOOLlocalmemory* remanent |

Fig. 9.8: Initialization with Variable Declaration

As shown above, an initialization value can be entered in the VARIABLE or OUTPUTS in the "Init value" column.

The Initialization value is entered instead of:

\* remanent

I

Information The Init value is assigned to the PV before the INIT SP is executed !

Therefore the value assigned in the INIT SP is always valid!

Example The fluid in a beaker should be heated to a specific temperature using a gas burner.

If the "TempAct" is smaller than the preset temperature "TempSet", the burner "heat" must be activated.



| Name    | Туре | Scope | Attribute | Value | Remark               |
|---------|------|-------|-----------|-------|----------------------|
| Heat    |      |       | ••••      | ••••  | Dig OUT, channel 3   |
| TempAct |      |       | •••••     | ••••• | Analog IN, channel 4 |
| TempSet |      |       |           |       | INTERNAL             |

| Project name: | proj_st |
|---------------|---------|
| Task name:    | s_heat1 |
| _             | ~       |

Resource: C#3

## 3.6.2 Defining Constants in Variable Declaration

Your machine or system has defined maximum and minimum values. These values are valid across the whole system and do not change after start up. These values are fixed in the program code.

Example: IF TempSet > 300 ...

The maximum value is 500 for a new system. You now have to change all program positions in all tasks. This takes a lot of time and effort.

This is why constants are used by most high level languages. Constants display values as text.

Example: IF TempSet > TEMP\_MAX ...

Now only the value for the constant "TEMP\_MAX" has to be changed in order to change all program sections. The entire project must then be compiled again and transferred.

| Name     | Туре | Scope  | Attribute  | Value      | Remark |
|----------|------|--------|------------|------------|--------|
| TEMP_MAX | INT  | global | constant   | 300        |        |
| TEMP_MIN | INT  | global | constant 💌 | 100        |        |
| TempAct  | INT  | global |            | * remanent |        |
| TempSet  | INT  | global | memory     | 300        |        |
| error    | BOOL | global | memory     | * remanent |        |
| heat     | BOOL | local  | memory     | * remanent |        |

Fig. 9.9: Constant Definition in the Variable Declaration

The attribute can be changed from "memory" to "**constant**" and therefore a variable to a constant.

Information Constant values **cannot be changed** while the system is running.

If more than 2 different reactions are required by a condition, additional ELSIF branches can be added to the IF statement.

| IF condition THEN    | IF statement             |
|----------------------|--------------------------|
| statement block      | condition(1) is true     |
| ELSIF condition THEN |                          |
| statement block      | condition(2) is true     |
| ELSIF condition THEN |                          |
| statement block      | condition(3) is true     |
| FISE                 |                          |
| statement block      | all conditions are false |
| END_IF               | End of the IF block      |
|                      |                          |

Information When ELSIF branching, plan the logic on paper first to avoid mistakes when programming!!!

# Example The fluid in a beaker should be heated to a specific temperature using a gas burner.



The following boundaries must be keep to:

Temp\_SET > Temp\_MAX -> Error

Temp\_SET < Temp\_MIN -> Error

In case of error: delete heat and cool!

Temp\_ACT > Temp\_SET -> Cooling

Temp\_ACT < Temp\_SET -> Heat

| Name     | Туре | Scope | Attribute | Value | Remark             |
|----------|------|-------|-----------|-------|--------------------|
| Error    |      |       | •••••     |       | Dig OUT, channel 4 |
| heat     |      |       | •••••     |       | Dig OUT, channel 5 |
| cool     |      |       |           |       | Dig OUT, channel 6 |
| TempAct  |      |       | •••••     |       | Anal IN, channel 1 |
| TEMP_MAX |      |       |           |       | CONSTANT           |
| TEMP_MIN |      |       |           |       | CONSTANT           |
| TempSet  |      |       |           |       | INTERNAL           |

| Project name: | proj_st |
|---------------|---------|
| Task name:    | s_heat2 |
| Resource:     | C#3     |

Additional Considerations:

Which variables should be pre-initialized or defined using constants ?

## 3.7 Case Statement

**CASE** statements enable fast access to different actions depending on the value of the variable.

We will give a description of the case statement using the following example:

| Case<br>statement | Example                               | Description               |
|-------------------|---------------------------------------|---------------------------|
| CASE<br>OF        | CASE Position OF                      | Start Case Statement      |
| 1:                | 1: Display := OVERVIEW;               | Only for first position   |
| 2,5:              | <b>2,5:</b> Display := NOT_SUPPORTED; | Valid for pos. 2 or 5     |
| 610:              | 610: Display := SETVALUE;             | Valid for pos. 6 to 10    |
| 1120:             | <b>1120:</b> Display := ACTVALUE;     | Valid for pos. 11 to 20   |
| ELSE              | ELSE Display := ERROR;                | All other positions       |
| END_CASE          | END_CASE                              | End of the CASE statement |

The Expression (between CASE and OF) must be type UINT and can have a value between 0 and 65535!

Whole number values can be used as steps (UINT).

There are two possibilities to use several numbers in the same statement:

- Fields with **progressive number** (e.g. 6..10:) There can only be two dots between numbers!
- Separate the numbers with a **comma** (e.g. 2, 5:)

A colon must be put after the step number.

The ELSE STATEMENT block processes all numbers that are not listed.

Only one step per cycle is processed.

Example CASE statements are frequently used for step sequences. This example shows you how to use a CASE statement to carry out a simple comparison.

| The contents of a beaker are tested against low, ok and high levels.                             | 98%<br>90% | high |
|--------------------------------------------------------------------------------------------------|------------|------|
| Use an output for each of the low, ok and high levels.                                           |            |      |
| The level of liquid in the beaker is read by an analog value and is internally converted to a %. |            | ok   |
| An E-STOP should be triggered at 99 %                                                            |            |      |
|                                                                                                  | 20%        | low  |
|                                                                                                  | 0.0        |      |
|                                                                                                  | 0%         |      |

| Name | Туре | Scope | Attribute | Value | Remark |
|------|------|-------|-----------|-------|--------|
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |
|      |      |       |           |       |        |

| Project name: | proj_st |
|---------------|---------|
| Task name:    | s_case  |

C#4

Resource:

## 3.8 Loops

Lopps enable one or more statements to be processed repeatedly depending on the condition. Three types of loops are defined in IEC1131-3.

| Key Word | Program                 | Description |
|----------|-------------------------|-------------|
| FOR      | FOR i := 0 TO 4 BY 2 DO | Loop Start  |
| BY<br>DO | res := value + i;       |             |
| END_FOR  | END_FOR                 | Loop End    |

| Key Word  | Program                                              | Description              |
|-----------|------------------------------------------------------|--------------------------|
| WHILE     | i := 0;<br>WHILE i <= 4 DO                           | Initialize Loop<br>Start |
| END_WHILE | res := value + i;<br>i := i + 1;<br><b>END_WHILE</b> | Loop End                 |

| Key Word   | Program           | Description     |
|------------|-------------------|-----------------|
|            | i := 0;           | Initialize Loop |
| REPEAT     | REPEAT            | Start           |
|            | res := value + i; |                 |
|            | i := i + 1;       |                 |
| UNTIL      | UNTIL i > 4       |                 |
| END_REPEAT | END_REPEAT        | Loop End        |

**NOTE** Take care to avoid creating endless loops as they will lead to a cycle time violation.
Array A normal PV can be seen as a box in which information can be entered and read from.

If you require several PVs, each PV must be separately defined and accessed.

An **array** is a **group of PVs with the same data type**. An array can be seen as group of safety deposit boxes (each box is the same, however the "contents" are always different). This allows the group to be accessed using a single name.

This short example shows the advantages of arrays which simplify the organization and display of large amounts of data.

An array is defined under length in the variable declaration.

Example: 5 weights are hanging on a crane.

We want to be able to access the weights using the PV names "Weight".

| PV name | Type[Length]    |
|---------|-----------------|
| Weight  | INT[ <b>5</b> ] |

The groups of PVs can now be accessed with a common name "Weight". In order to access individual elements you still have to specify the index of the element required.

| Variable name | Indizes   |            |            |            |            |
|---------------|-----------|------------|------------|------------|------------|
|               | [0]       | [1]        | [2]        | [3]        | [4]        |
| Weight        | 1000      | 4000       | 0500       | 0300       | 0020       |
|               | Weight[0] | Weight [1] | Weight [2] | Weight [3] | Weight [4] |

Example Carry out the following task to illustrate the loop:

5 loads are suspended from a crane. To determine the total load you must add the individual loads together.

You can simulate the internal variables using PV monitor.



| Project name: | proj_st |
|---------------|---------|
| Task name:    | s_last  |
| Resource      | C#1     |

Additional Tasks:

- Create this example using **all** three **loop types**.
- Trigger a cycle time error in a new task with the help of a loop. An array is not required. (Task name: s\_runt; C#1)
- Let the task run in task class Cyclic#3.

Important when using Arrays:

The length of a variable is assigned in the variable declaration:

Single variables:Length = 1Array variables:Length > 1

The variable "Var" is defined as follows:

Name Data type[Length]

Var USINT[7]

Access to the "Var" array can look like this:

| 20     | 123    | 12     | 10     | 11     | 23     | 25     | ??     |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Var[0] | Var[1] | Var[2] | Var[3] | Var[4] | Var[5] | Var[6] | Var[7] |

It is often overlooked when programming that an array begins with **Index 0**. The loop is developed up to the variable length defined (ex. Var, INT[7]), the undefined DPR areas (or others used) are read or overwritten.

# **3.9** Working with Function Blocks

Function blocks are called in the same way as commands. They are accessed directly by name. The enter and return variables are given in brackets (beginning with the first input).

Example: Create a switch on delay of 2 seconds.

```
(* Function call*)
Preset := 200;
TON_1(IN := Input, PT := Preset)
Output := TON_1.Q
or:
TON_1 (IN := Input, PT := 200)
```

The return parameter is returned to the hardware using standard procedures e.g. **Output := TON\_1.Q;** 

# Example Test TON

Then create a positive edge at an input with R\_TRIG. Every time an edge is triggered, the counter increases by one.

Project name:proj\_stProgram name:st\_fbk

?

Resource:

# 4 SUMMARY

**Operator Priorities:** 

| Operation                            | Symbol                           | Priority |
|--------------------------------------|----------------------------------|----------|
| Brackets                             | 0                                | highest  |
| Function evaluation                  | ID                               |          |
| Example:                             | (argument list)<br>LN(A), MAX(X) |          |
| Potentiation                         | EXPT(IN1,IN2)                    |          |
| Negation<br>Complement               | NOT                              |          |
| Multiplication<br>Division<br>Modulo | *<br>/<br>MOD                    |          |
| Addition<br>Subtraction              | +<br>-                           |          |
| Compare                              | <, >, <=, >=                     |          |
| Equal to<br>Not equal to             | =                                |          |
| Boolean AND                          | AND                              |          |
| Boolean Exclusive Or                 | XOR                              |          |
| Boolean OR                           | OR                               | lowest   |

# Logic Connections

| Symbol | Logic Connections Example |               |  |
|--------|---------------------------|---------------|--|
| NOT    | Negation                  | a := NOT b;   |  |
| AND    | logic AND                 | a := b AND c; |  |
| OR     | logic OR                  | a := b OR c;  |  |
| XOR    | Exclusive OR              | a := b XOR c; |  |

# Arithmetic Operations

| Symbol | Arithmetic Operations      | Example       |
|--------|----------------------------|---------------|
| :=     | Assignment                 | a := b;       |
| +      | Addition                   | a := b + c;   |
| -      | Subtraction                | a := b - c;   |
| *      | Multiplication             | a := b * c;   |
| /      | Division                   | a := b / c;   |
| mod    | whole number division rest | a := b mod c; |

| Data type | BOOL | SINT  | INT   | DINT  | USINT | UINT  | UDINT | REAL |
|-----------|------|-------|-------|-------|-------|-------|-------|------|
| BOOL      | BOOL | Х     | х     | х     | Х     | х     | Х     | Х    |
| SINT      | х    | SINT  | INT   | DINT  | USINT | UINT  | UDINT | REAL |
| INT       | х    | INT   | INT   | DINT  | INT   | UINT  | UDINT | REAL |
| DINT      | Х    | DINT  | DINT  | DINT  | DINT  | DINT  | UDINT | REAL |
| USINT     | Х    | USINT | INT   | DINT  | USINT | USINT | UDINT | REAL |
| UINT      | Х    | UINT  | UINT  | DINT  | UINT  | UINT  | UINT  | REAL |
| UDINT     | X    | UDINT | UDINT | UDINT | UDINT | UDINT | UDINT | REAL |
| REAL      | х    | REAL  | REAL  | REAL  | REAL  | REAL  | REAL  | REAL |

Implicit Data Type Conversion

× .... explicit conversion required depending on the data type

# Explicit Data Type Conversion

# Explicit Data Type Conversion carried out by STANDARD library functions.

The functions are constructed as follows.

- x .. Output data type
- y .. Target data type

x\_TO\_y e.g. BOOL\_TO\_DINT(bool\_var)

# Logic Compare Expressions

| Symbol | Logic Compare Expressions | Example                |
|--------|---------------------------|------------------------|
| =      | Equal to                  | IF $a = b$ THEN        |
| <>     | Not equal to              | IF a <> b THEN         |
| >      | Greater than              | IF $a > b$ THEN        |
| >=     | Greater than or equal to  | IF a >= b THEN $\dots$ |
| <      | Less than                 | IF a < b THEN          |
| <=     | Less than or equal to     | IF a <= b THEN         |

# Conditions

| Conditions | Example            | Description                        |
|------------|--------------------|------------------------------------|
|            | a := b * c;        | Calculation                        |
| IF         |                    | Start                              |
| THEN       | IF a > 0 THEN      |                                    |
|            | result := 1;       | Condition fulfilled                |
| ELSIF      | ELSIF $a = 0$ THEN | Check against 2 <sup>nd</sup> cond |
|            | Value := 100;      |                                    |
| ELSE       | ELSE               |                                    |
|            | result:= 0;        | no condition required              |
| END_IF     | END_IF             | End of the entscheidun             |

# Case Statement

| Case       | Example                               | Description                    |
|------------|---------------------------------------|--------------------------------|
| CASE<br>OF | CASE Position OF                      | Start                          |
| 1:         | 1: Display := OVERVIEW;               | only for first position        |
| 2,5:       | <b>2,5:</b> Display := NoT_SUPPORTED; | only valid for position 2 or 5 |
| 610:       | 610: Display := SETVALUE;             | Valid for pos. 6 <b>to</b> 10  |
| 1120:      | <b>1120:</b> Display := ACTVALUE;     | Valid for pos. 11 to 20        |
| ELSE       | ELSE Display := ERROR;                | All other positions            |
| END_CASE   | END_CASE                              | End of the CASE statement      |

Loops

| Key Word | Program                 | Description |
|----------|-------------------------|-------------|
| FOR      | FOR i := 0 TO 4 BY 2 DO | Start       |
| BY<br>DO | res := value + i;       |             |
| END_FOR  | END_FOR                 | End of Loop |

| Key Word  | Program           | Description      |
|-----------|-------------------|------------------|
|           | i := 0;           | Initialize Start |
| WHILE     | WHILE i <= 4 DO   |                  |
| bo        | res := value + i; |                  |
|           | i := i + 1;       | End of Loop      |
| END_WHILE | END_WHILE         |                  |

| Key Word            | Program                          | Description      |
|---------------------|----------------------------------|------------------|
| REPEAT              | i := 0;<br><b>REPEAT</b>         | Initialize Start |
|                     | res := value + i;<br>i := i + 1; |                  |
| UNTIL<br>END_REPEAT | UNTIL i > 4<br>END_REPEAT        | End of Loop      |

# **AUTOMATION BASIC**

| 1 | GEN | ERAL INFORMATION      | 2 |
|---|-----|-----------------------|---|
|   | 1.1 | Programming languages | 2 |

# **1 GENERAL INFORMATION**

#### **1.1 Programming languages**

B&R provides the ideal programming language for every application and programmer preference. The spectrum comprises:

- Ladder diagram (LAD)
- Instruction List (IL)
- Structured Text (ST)
- Sequential Function Chart (SFC)
- B&R Automation Basic (AB)
- ANSI C
- LAD The functionality of contact, logic, and function plan are all combined in LAD. Due to its similarity with circuit diagrams ladder diagrams are the easiest and most visual form of digital and analog programming.
- IL Instruction List is a machine based language that can be used to create logic connects in a similar way to LAD.
- ST This high level language is an easy to understand, high performance programming language for automation systems. Standard construction guarantees fast and efficient programming.
- SFC SFC is a programming language developed to dissect tasks into clearly organized sections. SFC is suited to processes reliant on a sequence of steps e.g. car washes.
- AB This is a B&R high level language. It is easy to understand, high performance programming language designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming. Previously known as PL2000.
- ANSI C High level language. High performance programming designed for the latest generation of automation systems. Standard construction guarantees fast and efficient programming.

# **SERVICE INFO**

| 1 | GEN | ERAL INFORMATION2                                      |
|---|-----|--------------------------------------------------------|
| 2 | BUF | FER CONCEPT                                            |
|   | 2.1 | Special features: B&R2010 / B&R2005 / B&R2003 / LS2513 |
|   | 2.2 | Buffering The PCC for Standard Operation4              |
|   | 2.3 | Check the Buffer                                       |
| 3 | SER | VICE TOOLS6                                            |
|   | 3.1 | Operating System7                                      |
|   | 3.2 | Diagnosis without Programming Device9                  |
|   | 3.3 | Diagnosis with Programming Device11                    |
|   | 3.4 | Debugging Options13                                    |
|   | 3.5 | Project Management using Schemes18                     |
|   | 3.6 | Boot Mode21                                            |

#### **1 GENERAL INFORMATION**

This chapter covers service techniques and programming options in further detail.

#### Buffer Concept

To protect the machine or system from data loss, the corresponding elements can be supplied in several ways.

#### Service Tools

Service technicians are often faced with the problem of users reporting machine or system failure but rarely giving any indication of the circumstances or possible causes of the failure.

#### Installing a New Operating System

Before a controller or APM can be used, an operating system must be installed.

#### Diagnosis without Programming Device

We want to examine the possible causes of errors without using AS. This information can be determined on site which can considerably speed up customer service by telephone.

#### Diagnosis with Programming Device

PG is required in order to access variables that are not displayed in the visualization. AS can evaluate all values available on the controller.

#### Project Management with Scheme

PopUp menus are provided to enable you to deactivate parts of the hardware as well as software. Variables that have a deactivated I/O assignment are transferred to the controller as "global" variables. This enables us to test the tasks that these variables use. Deactivated tasks are not transferred to the controller.

#### **Debugging Possibilities**

The SYSTEM monitor, LAD monitor and Watch monitor gives us a wide range of monitoring options. The line coverage function and the tracer can be followed precisely by the program on the controller, without influencing the controller. The debugger provides a tool to check the logical process of a program.

# **2 BUFFER CONCEPT**

The following components are provided on PCC systems:

- RTC (Real Time Clock)
- DPR (Dual Ported RAM)
- USERRAM
- System RAM

Rechargeable batteries, lithium batteries as well as gold foil capacitors are also supplied depending on the system. External buffering is also possible.

#### 2.1 Special features: B&R2010 / B&R2005 / B&R2003 / LS251

B&R2010 A **gold foil capacitor** serves as the short term buffer (min 10 minutes) in the case of power supply failure. Short term buffering guarantees problem free battery changes.

Long term buffering is carried out with a **lithium battery**. There is one battery in the CPU and one in the APM.

The MP100 multiprocessor does not have its own battery. This means that the APM battery must buffer the entire SRAM.

Data cannot be buffered on the IF100/IF101. The IF100 always boots after Power On with a coldstart. Data to be saved is stored on the CPU, or if this is not possible the data on the data module is saved in the FPROM.

B&R2005 In the event of power failure, the CPU tries first to do a short term buffer (min 10min) with the **gold foil capacitor** (if available). Long term buffering is carried out by a **rechargeable battery** on the CPU finally with a **lithium battery**.

The CP260 and IF260 are supplied for several months by an **internal accu**. After this time the **backplane** should be buffered by **battery**. The accu is only meant for short term buffering.

The CPU/PP module XP152 doesn't have its own buffer. The module is supplied by a **backplane with battery** or by the power supply with an **external buffer**. The battery module AC240 can be used for this. The **AC240** is equipped with 2 9V block batteries.

B&R2003, LS251

The CPU is buffered with a lithium battery!

# 2.2 Buffering The PCC for Standard Operation

The following buffer times have been calculated for standard operation: Standard Operation: The PCC operates 8 hours a day, 5 days a week.

| PCC System | Module                                     | Buffering                                            | Buffer Life<br>(25 °C)                           | Buffer Life<br>(40 °C) | Buffer Life<br>(60 °C) |
|------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------|------------------------|
| B&R2010    | CP200+ME913                                | 2*950 mAh<br>Lithium Batt.                           | 6 years                                          | 3 years                | 2 years                |
|            | CP100+ME910<br>CP100+ME913                 | 2*950 mAh<br>Lithium Batt.                           | 9.5 years <sup>1</sup><br>7.5 years <sup>1</sup> | 4.5 years<br>3.5 years | 4 years<br>3 years     |
|            | MP100+ME910<br>MP100+ME913                 | 1*950 mAh<br>Lithium Batt.                           | 5.5 years<br>4 years                             | 2.5 years<br>2 years   | 2 years<br>1.5 years   |
| B&R 2005   | CP260<br>IF260                             | NiCd rechargeable<br>battery in<br>Backplane         | 6 months<br>8 years <sup>1</sup>                 | 2 months<br>4 years    | n.V.                   |
|            | CP15x+ME960<br>CP15x+ME963<br>PS+Expansion | 50 mAh<br>rechargeable<br>battery +<br>950 mAh Batt. | 8 years <sup>1</sup><br>7 years                  | 5.5 years<br>5.5 years | 5 years<br>5 years     |
|            | + AC240 +<br>XP152, IF152,<br>IP151        | 2*9V<br>extra Longlife<br>Blockbatt.                 | 4.5 years                                        | 2 years                | 1.5 years              |
| B&R 2003   | CP47x                                      | 950mAh Lit. Batt.                                    | 9 years <sup>1</sup>                             | 4.5 years              | 1.5 years              |
| B&R LS251  | LS251                                      | 950mAh Lit. Batt.                                    | 8 years <sup>1</sup>                             | 4 years                | n.V.                   |

The power requirements of the elements depends greatly on the temperature and the size of the RAM memory (see catalog).

#### **IMPORTANT:**

The life time of the batteries is 7 years at 45°C according to the data sheet. The life time of rechargeable batteries is 3 years at 45°C. After 3 years the battery has only got 70 % of its capacity left which it will lose in following years.

<sup>&</sup>lt;sup>1</sup> The life time of the battery is 7 years according to the data sheet provided

#### 2.3 Check the Buffer

The times given on the previous page are mainly helpful in determining when servicing is required. You must ensure you carry out a battery life check from time to time.

#### Check by Status LEDs

The status LEDs show you the buffer status. The PCC carries out its own capacity test every minute.

#### Check by PCC Program (function)

The following function provides precise information about the status of the rechargeable battery or battery in the CPU or APM.

```
battery = SYS_battery()
```

## **Online Info: Buffering:**

<right mouse button> on the Cpu in the hardware tree



Fig. 11.1: Online Info



Fig. 11.2: Buffering Information

# **3 SERVICE TOOLS**

Service technicians are often faced with the problem that a machine or system part failure is registered by the user without any information about the circumstances surrounding the failure or possible causes for the failure.

What questions can you ask to ascertain how the problem came about ?

- Was the system running? If yes, how long?
- Have you made any changes? Hardware or Software?
- Power cut ? (lightning hit, over voltage)
- Does the module receive the sensor signal?
  - Input Leds lit?
  - If yes, is the signal recognized by the CPU (Watch monitor)?
- Did the failure occur during operation or during system start up.
- What is shown on the display or status Leds?
- Has the configuration been changed (visualization, parameters)?
- Are the output Leds lit?
- Have the outputs changed?

# 3.1 Operating System

3.1.1 Reinstall PCC Operating System

If the service technician or programmer has to install an new APM or **new** XP152 / CP260 / IF260, the first set is to set up the PCCSW (operating system):

- Disconnect power to the PCC
- Check that the **Mode Switch** is set to **Boot** (if provided, 00 or sliding switch)
- Reconnect power
- Select menu: Project: Services: Transfer Operating System
- Select PCCSW version Vx.xx
- Set CAN settings to default
- The PCCSW is now ready
- Disconnect power to the CPU
- Set CPU Mode switch to <> Boot (> 00 or sliding switch)
- Turn on the power

Information: Since a new LS251 is delivered with the operating system, you only have to check the Mode switch!

# 3.1.2 PCC Operating System Update

If the operating system V2.0 or higher is already available on the controller, a new operating system can easily be installed by selecting the menu option:

# **Project: Services: Transfer Operating System**

#### 3.1.3 PCC Operating System Update Mexxx (modular APMs):

- Disconnect power supply to PCC
- Push the APM cover off using your thumb.
  Set switch to ERASE and replace APM in the CPU
- Write Protect switch -> Write Enable
- Power on
- Wait until the red LED on the APM is off
- Select menu point: Project: Services: Transfer Operating System
- Select PCCSW version Vx.xx
- Set CAN setting to default
- The PCCSW is now reset
- Disconnect power to the CPU
- Reset the APM switch from ERASE to OK and close the cover
- Switch on power -> The procedure is now complete

# 3.2 Diagnosis without Programming Device

The system provides the technician with a multitude of visual information in the form of status LEDs that can be accessed without the use of a programming device.

Standard LEDs available on all CPUs:

| CPU | Ready LED                  | Lit | CPU running no problem.<br>Also lit in Service Mode.                                                                           |
|-----|----------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
|     |                            | Off | No operating system loaded.<br>No APM installed                                                                                |
|     | Run LED                    | Lit | If the cyclic runtime system is active. Task classes<br>run according to set cycle times. Also when no tasks<br>are available. |
|     |                            | Off | Program Error<br>System reset / stopped                                                                                        |
|     | Error LED                  | Lit | CPU error, CPU is reset.                                                                                                       |
|     |                            | Off | Run LED must be one.                                                                                                           |
|     | Mode LED<br>(except CP15x) | Lit | When write access to Flash is made. Burn program or operating system.                                                          |

LEDs dependent on CPU type (see HW manual).

| Interfaces | Rx        | blinking | Data being received                                                                |
|------------|-----------|----------|------------------------------------------------------------------------------------|
|            |           | Off      | Nothing is being received                                                          |
|            | Tx        | blinking | Data is being sent                                                                 |
|            |           | Off      | Nothing is being sent                                                              |
|            | RS232     | blinking | For CPUs where only one LED is available, only send and receive data is displayed. |
|            | CAN       | blinking | For CPUs where only one LED is available, only send and receive data is displayed. |
|            |           |          |                                                                                    |
|            | Force LED | Lit      | Min 1 I/O has been forced (force relay on).                                        |
|            |           | Off      | Not forced.                                                                        |

# LEDs on I/O Cards

| Digital<br>module status<br>LEDs | Input / o<br>Output | on               | Input/output on (note circuit type: Sink/Source).                                                      |  |
|----------------------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------|--|
|                                  | C                   | off              | Input/output off                                                                                       |  |
| Terminal<br>Block                | B&R2010             | on               | Terminal block not in module                                                                           |  |
|                                  | (                   | on               | (check in program:<br>ISP1.x.0,LSB = 1terminal block missing).                                         |  |
|                                  | (                   | off              | Terminal block installed in module<br>(check in program:<br>ISP1.x.0,LSB = 0terminal block installed). |  |
| Analog<br>module                 | RUN LED             | on or<br>blinkir | AD/DA convertor working,<br>module being accessed.                                                     |  |
|                                  |                     | off              | Module not used (reserve)<br>AD/DA convertor defective.                                                |  |
|                                  | Terminal Bloo       | ck on            | Terminal block not in module                                                                           |  |
|                                  | B&R2010             | off              | Terminal block installed in module.                                                                    |  |

In order to automatically test the inputs, the test terminal must be installed where the outputs are connected. The outputs are switched on by the test task, read by the inputs and the result evaluated.

#### Visualization:

Visualization allows the PV's and the error module to be read if you program it to do that.

#### **3.3 Diagnosis with Programming Device**

You must access variables that are not displayed using PG. AS can evaluate all values that are available on the controller.

#### Variables and I/Os

In addition to the status LEDs on the module, the internal values of the individual process variables can be displayed and edited with the help of the Watch monitor.

Note: If the status LED of a digital input is lit and nothing is read from this channel (check PV in the Watch monitor), the channel is definitely defective. If the status LED is not lit and a value is read from the digital input, there is either a program error or the LED is faulty.

Analog Inputs/Outputs can only be checked by the Watch monitor.

Force: Used to set I/Os (digital and analog) to specific values. The force should be carried out in the Watch monitor (forced I/O indicated by a in the [Force] column).

The force function is a very useful tool for testing I/Os. The output is set to a specific value. The result can either be read immediately on the output status LED, or measured using a specific measuring device.

If several I/Os are forced in a Watch monitor, they can be easily deleted using a menu option:

# 赵 Object: Force All Off

or right mouse button in Force menu

# Project: Service: Warmstart:

"Project: Service: Warmstart" also deletes all force tasks including those not shown in the Watch monitor.

# 3.3.1 System Logbook

All errors triggered by an EXCEPTION (system exception), are entered in the error logbook. If an exception is triggered, all outputs are switched off. The program on the PCC is stopped. In order to determine the cause of the error, select:

- **CPU select** in the hardware tree
- "Log book" tab in the software tree

A window is then opened which shows the last error in clear text. The top error is the most recent.

Some user access is recorded in the logbook while the program continues to run (e.g. clock change). These entries are recorded as WARNINGS.

| Time                 | Error | Info        | Module | Description                |
|----------------------|-------|-------------|--------|----------------------------|
| 10.12.98 15:45:23.00 | 2075  | 16#00000000 | Syss   | Warning: Time/date changed |

Time the CPU was changed.

Error descriptions can be obtained from AS Online help. Or user entries can be used in the error logbook:

If the operator exceeds defined limits, a user entry can be created and the CPU reset.

| Time                | Error | Info        | Module | <b>Extended information</b> |
|---------------------|-------|-------------|--------|-----------------------------|
| ??.??.?? ??:????.?? | 2222  | 16#12345678 | ????   | Warning: ????????           |

In this case the service technician needs a reference list of user entries. The reference list also serves as an action list of tasks to be carried out.

# 3.4 Debugging Options

The LAD monitor, SYSTEM monitor and Watch monitor gives us mightily powerful monitoring possibilities. The line coverage function and tracer can trace the program on the controller with great precision without influencing the process. The debugger is also a powerful tool to examine the logical processing of a program.

System Monitor: Overview of the modules installed on the controller. System or application module.



Fig. 11.3: System Monitor

LAD Monitor: Shows the status of the individual logic connections.



Fig. 11.4: LAD Monitor

# Watch Monitor:

Tabular list of the different variables on the controller. Global and local variables for all tasks can be listed.

| 🞕 B&R Automation Studio - [Lton.SRC [Watch] Lton] |                                          |             |                      |       |  |  |
|---------------------------------------------------|------------------------------------------|-------------|----------------------|-------|--|--|
| 🂐 Eile Edit View Insert Open Project O            | <u>bj</u> ect <u>⊺</u> ools <u>W</u> ind | ow <u>?</u> |                      | _ & × |  |  |
| ] D 🗳 🖬 🕼   X 🖻 💼   🗠 🗠   🕽                       | < 🖆 🕹 🖉 🧳                                | ) et   🔧    | 🍋 🤍 📎 🤶              |       |  |  |
| 🆄 😅 🖬 🥦 🐗 🕩 📭 🕽                                   | 9 😽 2# 8# 10                             | # 16# abo   |                      |       |  |  |
| Name                                              | Туре                                     | Force       | Value                |       |  |  |
| ♦ Key_1                                           | BOOL                                     |             | FALSE                |       |  |  |
| PresetTime                                        | UDINT                                    |             | 200                  |       |  |  |
| Relay_5                                           | BOOL                                     |             | FALSE                |       |  |  |
| 🔷 et                                              | UDINT                                    |             | 0                    |       |  |  |
| □ ● TON_1                                         | TON_10ms                                 |             |                      |       |  |  |
| - • IN                                            | BOOL                                     |             | FALSE                |       |  |  |
| PT                                                | UDINT                                    |             | 200                  |       |  |  |
| -• q                                              | BOOL                                     |             | FALSE                |       |  |  |
| ⊢♦ ET                                             | UDINT                                    |             | 0                    |       |  |  |
| StartTime                                         | UDINT                                    |             | 0                    |       |  |  |
| _ ∟• м                                            | BOOL                                     |             | FALSE                |       |  |  |
|                                                   |                                          |             |                      |       |  |  |
| X * Transferring i_logicl ok                      |                                          |             |                      |       |  |  |
| Output Debug Find in Files                        |                                          |             |                      |       |  |  |
| For Help, press F1                                |                                          |             | COM1 CP260 V2.10 RUN |       |  |  |

Fig. 11.5: Watch Monitor (PV Monitor)

#### Archive Mode:

The variable values on the controller are saved to hard disk and can be recalled later for further tests. The values can be changed, collated and transferred to the controller.

| 🞕 B&R Automation Studio - [1_ton.SRC [₩a                               | atch]   ton]                     |             |                           | - 🗆 × |  |  |
|------------------------------------------------------------------------|----------------------------------|-------------|---------------------------|-------|--|--|
| 🂐 <u>F</u> ile <u>E</u> dit ⊻iew Insert <u>O</u> pen <u>P</u> roject O | <u>bject T</u> ools <u>W</u> ind | ow <u>?</u> |                           | _ 8 × |  |  |
|                                                                        | < 🖆   Ľ 🗹 🗳                      | ) 🗐 🔍       | 🍋 🥺 🥑 🔋                   |       |  |  |
| 🎋 🚅 🖬 🎭 🖏 🕩 🕟 🕽                                                        | 9 😽 2# 8# 10                     | # 16# abo   |                           |       |  |  |
| Name                                                                   | Туре                             | Force       | Value                     |       |  |  |
| Key_1                                                                  | BOOL                             | 🗟 😕         | FALSE                     |       |  |  |
| PresetTime                                                             | UDINT                            | H           | 200                       |       |  |  |
| Relay_5                                                                | BOOL                             | 🖫 😑         | FALSE                     |       |  |  |
| 💊 et                                                                   | UDINT                            |             | 0                         |       |  |  |
| 🖃 🛑 TON_1                                                              | TON_10ms                         |             |                           |       |  |  |
| ⊢♦ IN                                                                  | BOOL                             |             | FALSE                     |       |  |  |
| ⊢♦ PT                                                                  | UDINT                            |             | 200                       |       |  |  |
|                                                                        | BOOL                             |             | FALSE                     |       |  |  |
| ⊢♦ ET                                                                  | UDINT                            |             | 0                         |       |  |  |
| - 💊 StartTime                                                          | UDINT                            |             | 0                         |       |  |  |
| ∟ ч м                                                                  | BOOL                             |             | FALSE                     |       |  |  |
|                                                                        |                                  |             |                           |       |  |  |
| X * Transferring i_logic1 ok                                           |                                  |             |                           | ×     |  |  |
|                                                                        |                                  |             |                           |       |  |  |
| rorneip, press ri                                                      | 1                                |             | JCOM1 JC1200 V2.10 JHUN J |       |  |  |

Fig. 11.6: Watch Archive Mode

Tracer: Provides real time images of the data on the controller. The values can be recorded at the start or end of the task.



Fig. 11.7: Tracer

#### Line Coverage:

The line coverage function can be tested using the following C task.

```
/* _____
  #include is required to get the Standard Type Declaration.
_____*
#include <bur\plc.h>
_GLOBAL plcbit heat; /* The variables are defined as "GLOBAL"
_GLOBAL short TempSet, /* variables for our example.
TempAct;
                                                 */
                                                 */
/* _LOCAL defines a local variable that should be stored in the DPR.
                                                */
/* _GLOBAL defines a global variable that should be stored in the DPR. */
/* _____
  Initialization Subprogram: Started with _INIT.
_____*/
_INIT void init(void)
{
}
/* _____
  Main program: Started with _CYCLIC.
-----*/
_CYCLIC void cyclic(void)
{
if (TempAct < TempSet)</pre>
  {
     heat = 1;
  }
else
 {
    heat = 0;
  }
} /* end of cyclic() */
```

#### Line Coverage

Overview of program components currently being processed. The line coverage function shows a snapshot image.

| B&B Automation Studio - Ic. task c. IC. Language | 11                            |      |             |             |     |
|--------------------------------------------------|-------------------------------|------|-------------|-------------|-----|
| C File Edit View Open Project Debug Object       | Tools <u>W</u> indow <u>?</u> |      |             | - 8         | ×   |
|                                                  | ľ ď 🕸 💷 🔦                     | ۵ 🏟  | ♥ ?         | 🛾 🐀   ! 🖻 🗗 |     |
| 📣 🌤 🌤 🎋 👬 🖓 🍹 2# 10# 16# 🖌                       |                               |      |             |             |     |
|                                                  |                               |      |             | */          |     |
| _CYCLIC void cyclic(void)                        |                               |      |             |             |     |
| <pre>D {     If (Templet &lt; TempSet) </pre>    |                               |      |             |             |     |
| ( TempSet = 00300                                |                               |      |             |             |     |
| heat = 1; short int                              |                               |      |             |             |     |
|                                                  |                               |      |             |             |     |
| (                                                |                               |      |             |             |     |
| heat = $0;$                                      |                               |      |             |             |     |
| )                                                |                               |      |             |             |     |
| ) /* end of cyclic() */                          |                               |      |             |             |     |
|                                                  |                               |      |             |             | -   |
| •                                                |                               |      |             |             | ř   |
|                                                  |                               |      |             |             |     |
| Transferring c_trace ok                          |                               |      |             |             |     |
|                                                  |                               |      |             |             | ◄   |
|                                                  |                               |      |             | •           |     |
| U Output Debug Find in Files                     |                               |      |             |             |     |
| For Help, press F1                               | Ln 1, Col 1                   | COM1 | CP260 V2.10 | RUN         | 11. |

Fig. 11.8: Line Coverage

Debugger:

The debugger allows you to test the logical process of a program step by step.

| 🕅 B&R Automation Studio - [c_task.c [C Language]]                | _ 🗆 X  |
|------------------------------------------------------------------|--------|
| C File Edit View Open Project Debug Object Tools Window ?        | _ 8 ×  |
| 🗅 🖆 🖬 🕼 🖇 🖻 🖒 🗠 🗙 📽 🖆 🗹 🗳 💷 🔍 🐚 📎 😵 🚺 💨 🏀 📘                      | P) 🔂 🛛 |
| ▲ % % % ▲ ▲ ▲ ▲ ▲ ▲ ↓ 2# 10# 16# 'A'                             |        |
| (                                                                | •      |
| if (TempAct < TempSet)                                           |        |
|                                                                  |        |
| neat = 1;                                                        |        |
| else                                                             |        |
|                                                                  |        |
| <pre>beat = 0;</pre>                                             |        |
| ,                                                                |        |
| ) /* end of cyclic() */                                          |        |
|                                                                  |        |
|                                                                  |        |
| Modulstart:11f52dc.                                              |        |
| Getting WinPG symbolsdone.                                       |        |
| <pre>Z cyclic () at c:\projects\proj_001.pgp\pgm\proj_001\</pre> |        |
| 32 heat = U;                                                     |        |
|                                                                  |        |
| Dutnut Datus (a scale) Find in Files                             |        |
|                                                                  |        |

Fig. 11.9: Debugger

# 3.5 Project Management using Schemes

Parts of the hardware can be disabled using PopUp menus. Variables that have a deactivated I/O assignment are transferred to the controller as "global" variables. This enables us to test the tasks that use these variables. Deactivated tasks are **not** transferred to the controller.

#### Deactivate Hardware:

Click the right mouse button on the HW configuration to open the following PopUp menu.



Fig. 11.10: Disable PopUp



Fig. 11.11: Disabled Hardware

#### **IMPORTANT:**

If tasks that use the disabled hardware are transferred to the controller, the task variables are stored as "global" variables.

#### Software on the CPU can be tested without Hardware.

#### Deactivate Software

**Object: Disable:** Task is deactivated.



Fig. 11.12: SW Disable PopUp

Click on the task using the right mouse button. This PopUp allows you to disable a task. The task name is then shown in opaque text.

Save Scheme:

#### **Project: Save Scheme:**



Fig. 11.13: Save Scheme

The hardware and software, deactivated by the "disable" command can be stored in a configuration.

"Open Scheme" opens an existing configuration.

"Invert Scheme" inverts the software configuration. This means that active tasks are deactivated and via versa.

"Reset Scheme" recalls all start parameters. All tasks are active.

Example Test project management using schemes

- Disable a few tasks and transfer the project to the controller
- Add some HW components. Now try to transfer the project. What happens?
- Disable HW that is not available and transfer it to the project.

# 3.6 Boot Mode

(see also System Software Reference Manual)

# 3.6.1 Normal Boot Procedure

- Delete Outputs: Deletes all outputs
- Sysconf:

In the event of a "Warmstart" or "Coldstart", the configuration stored in USRROM is executed.

- Init Value Handling: All variable and output PVs are initialized with their "Init Value" (\*remanent, set value).
- Enable Exception:

Calls the INIT routines of all exception tasks and enables exception task classes. INIT routines can trigger exceptions whereby the exception task class must be enabled first.

# • INIT routine handling:

INIT routines of all other task classes are called as follows: Timer#1, Timer #2, Timer #3, Timer #4, Cyclic#1, Cyclic #2, Cyclic #3, Cyclic #4 and IRQTC.

The INIT routines are processed within a task class in accordance to the sequence determined by the software tree.

Attention: Cycle time monitoring is deactivated during INIT routine!

Activate ready relay and set RUN LED.

• Cyclic Handling:

Cyclic tasks are started as follows:

Timer#1, Timer#2, Timer#3, Timer#4, Cyclic#1, Cyclic#2, Cyclic#3, Cyclic#4 and non-cyclic tasks (usertasks, communication).

Tasks are processed within a task class in accordance to the sequence determined by the software tree.

# 3.6.2 Warmstart

- The system is initialized and started with the current data (initialization value or remanent value).
- All battery buffered data remains secure. Variable and outputs are initialized with the INIT value.
- The software remains unchanged and executed from the SRAM or USER ROM.
- New System Module (HW and/or SW) not recognized by warmstart.
- A warmstart is required to acknowledge a CPU error.

Trigger Warmstart:

- Project: Service: Warmstart
- B&R2010: Select from "I" with mode button and then select button
- Turn power off then on again
- Call the function: "SYSreset(..)" with warmstart mode
- Change the key switch position from SERVICE to PROGRAM

Display recognition for B&R2010: "IN"

# 3.6.3 Coldstart

- The entire PCCSW is newly initialized. The SRAM is deleted. The system and project software is reconstructed by the USRROM and FIXRAM (optional MEMCARD).
- All data is deleted. Variables, CPU I/O, as well as the static area of global FBKs are initialized with the value 0.
- All installed system modules (SW system modules) are referenced and initialized.

Trigger Coldstart:

- Project: Services: Coldstart
- B&R2005: Press the TOTALINIT button (depends on CPU)
- B&R2010: Select "T" with the mode button and then select button
- Change APM A coldstart must be triggered after inserting the APM for safety reasons, this means that only non-volatile projects can be sent with a modular APM.
- Double RESET: Press the RESET button during the booting
- Call the function: "SYSreset(..)" with coldstart mode
- Change from diagnosis in the run mode

B&R2010 Display: "TI"

# 3.6.4 Reset/Watchdog

- The PCCSW remains unchanged and is reconstructed from the SRAM and USER ROM.
- All battery buffered data is accepted. Variables and outputs are initialized with the INIT value.
- Set system to the service mode which inactivates the project
- Entry in error logbook: WARNING Boot by WATCHDOG or manual reset

Trigger Reset/Watchdog:

- Droject: Services: Stop Target
- B&R2005, B&R2010 and LS251: Press the reset button
- Change the key switch position from PROGRAM to SERVICE
- Watchdog not accessed correctly by the system SW (checked every 200 msec)

B&R2010 Display: "RS - Service"
## 3.6.5 Error / Service

- If a fatal error occurs on the CPU it is recorded in the error logbook and displayed on the B&R2010 CPU status display.
- The CPU boots in error mode and goes into service mode.
- This enables error analysis to be carried out by Automation Studio.
- The error behavior is the same as in Reset/Watchdog mode.

## Error Analysis:

- Error in boot or cyclic system
- User entry in error logbook with the function: "ERR\_fatal(...)"

B&R2010 Display: "SERVICE"

## 3.6.6 Diagnosis

- Only firmware modules are initialized (corresponds to empty APM!).
- Modules in USRROM, FIXRAM, MEMCARD are not initialized.
- This means that errors caused by module burned to the USRROM, FIXRAM, MEMCARD, can be dealt with.
- The system is set in diagnosis mode.
- Booting is now only possible with a coldstart!
- USRROM, FIXRAM, MEMCARD can only be deleted in diagnosis mode!

Trigger Diagnosis Mode:

- Project: Services: Diagnostics
- Press coldstart (Total Init) button for approx. 5 sec until only the READY and ERROR LEDs are lit and the CPU boots in diagnosis mode
- B&R2005+B&R2003: Move Hex number switch to position "F" and PowerOff PowerOn
- B&R2010: Simultaneously press <Cursor><top> + <Enter> keys. Then Power On.

B&R2010 Display: "DI – SERVICE"

# **PROJECT MANAGEMENT**

| 1 | GEN | IERAL INFORMATION    | 2 |
|---|-----|----------------------|---|
| 2 | PRO | JECT ORGANISATION    | 3 |
| 3 | AUT | OMATION STUDIO       | 4 |
| 4 | HAR | RDWARE CONFIGURATION | 5 |
| 5 | SOF | TWARE CONFIGURATION  | 6 |
|   | 5.1 | System Settings      | 6 |
|   | 5.2 | Task Class Settings  | 7 |
|   | 5.3 | Task Properties      | 8 |
|   | 5.4 | Project saving       | 9 |

## **1 GENERAL INFORMATION**

The function of the B&R 2000 system is repeated and supplemented.

#### **Project Organization**

The individual Functions (tasks) that are to carry out one or more controls are summarized in the project.

#### Automation Desktop

The Automation desktop is what you use to program the B&R 2000 system. The functions range from "standard" task programming to expert modules.

#### Hardware Configuration

Hardware configuration determines the construction of the individual controls. The connections between variables and the physical I/Os is created here.

#### Software configuration

During software configuration the tasks are built. The workings of these tasks can be accurately defined using the properties dialog box.

## **2 PROJECT ORGANISATION**

Individual functions (tasks) that carry out more than one control should be summarized in the project.

The project will be saved on to the hard disk as in the diagram below.



#### Fig. 12.1: AS directory structure

projects: General project directory. Customer names and details can be stored here since customers normally have several machine or system projects.

proj\_001.pgp:

Directory in which all project data is saved (project name.PGP).

- dbk: General database of AS. Information about the libraries. General settings.
- Libfiles: Standard libraries relevant to the project are saved here.

#### proj\_001.sps:

Database for the controller, hardware construction...

- pgm: Path for the program module.
- proj\_001: Name for each base rack.
- CPU: All tasks and relating settings are saved in this directory.

#### **Data types/Extensions:**

| ID    | Description      | Туре  | Meaning           |
|-------|------------------|-------|-------------------|
| *.src | Source files     | *.c   | C Source Code     |
| *.br  | Executable files | *.h   | Header file for C |
| *.pvm | Watch settings   | *.bak | Backup file       |

### **3 AUTOMATION STUDIO**

Automation desktop is the tool with which the B&R system 2000 can be programmed. The functions range from "normal" task programming to up to the expert modules.



Fig. 12.2: Automation Desktop

Menus, button lists and pop up menus are at the users disposal.

The project hardware is setup for the in the left window (hardware configuration). While creating the project the user can automatically load for the controller.

The right window represents the software configuration in which the settings for all resources and tasks can be carried out.

The message box at the bottom of the screen alters the user to possible errors or compiler messages.

#### **4 HARDWARE CONFIGURATION**

The hardware configuration serves to construct the individual controls. In addition the connections between the global variables and the physical I/Os are made.

| 🕅 B&R Automation Studio - [proj_0                                        | 001.GDM [Project]]                          |                                                     |                                                                                     | - D ×  |
|--------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------|--------|
| <u>File_E</u> dit_⊻iew_Insert_Open_ <u>F</u>                             | <u>Project Object T</u> ools <u>W</u> indow | 2                                                   |                                                                                     | _ 8 ×  |
| 🛛 🕞 🖬 🕼 🕺 X 🖻 💼 🗠                                                        | <u>∼   X 🖆   Ľ ď 🏶 I</u>                    | 1   💊   🍋 🤍 🤇                                       | V ?                                                                                 |        |
| Model no. Sk                                                             | Select Module                               |                                                     |                                                                                     | ? ×    |
| 🖻 🏂 2005 BF                                                              |                                             | Module Selection List                               |                                                                                     |        |
| – 🛴 3PS794.9 P<br>– 🗊 P                                                  |                                             | Model no.                                           | Description                                                                         |        |
| □ □ □ □ 0<br>□ □ □ 0<br>□ □ 0<br>□ □ 0<br>□ 0<br>□ 0<br>□                |                                             | □ Digital out<br>□ Digital out<br>□ 3D0479.6        | 2x8 T20/230VAC, 50ms<br>Digital out<br>2x8 Transistor, 0.5A/24VDC                   |        |
| 1.2<br>- 1.3<br>3D1476.6 3<br>- 1.3<br>3D1476.6 3<br>- 1.2<br>3D1476.6 4 |                                             | - 3D0480.6<br>- 3D0650.6<br>- 3D0690.6              | 2x8 Transistor, 2A/24VDC<br>4x4 Relais, 2A/120VAC<br>8x1 Triac, 1.5A/120VAC         |        |
| - A. 3A1350.6 5<br>- A. 3A0350.6 6                                       |                                             | E 3D0750.6<br>3D0760.6<br>⊡ Analog in<br>E 3∆1350.6 | 4x2 Relais, 3A/230VAC<br>8x1 Relais, 4A/30VDC-240V/<br>Analog in<br>1x8 +10V 12 Bit | /C     |
| - 35X150.60-1 8<br>- 34T660.6 9                                          |                                             | - 3AI375.6                                          | 1x8 010V, 12 Bit                                                                    | ▶      |
|                                                                          |                                             | C Insert Module                                     | Replace Module                                                                      |        |
| * Transferring c_trace                                                   | ok                                          |                                                     | OK Ca                                                                               |        |
|                                                                          |                                             |                                                     |                                                                                     | T<br>T |
| Uutput Debug Find in Files                                               |                                             |                                                     |                                                                                     |        |
| For Help, press F1                                                       |                                             | COM1 0                                              | CP260 V2.10 RUN                                                                     |        |

Fig. 12.3: Inserting a Module

| 🚳 B&R Automation Studio - [pr                                                 | oi_001.0         | iDM [Project]]                                |                |              |                     | _ 🗆 ×    |
|-------------------------------------------------------------------------------|------------------|-----------------------------------------------|----------------|--------------|---------------------|----------|
| _ <u>∫</u> <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>O</u> per | n <u>P</u> rojec | t O <u>bj</u> ect <u>T</u> ools <u>W</u> inde | ow <u>?</u> wo |              |                     | _ 8 ×    |
|                                                                               | 167 CH           | X 🖻   C 🗹 🕸                                   | ) 🗐 🗐          | 1 🛛 🖉 🖉      |                     |          |
| Model no.                                                                     | Sk               | 1/0 Description                               |                |              |                     |          |
| 🗆 🌄 PR0J_001                                                                  |                  | Name                                          | Data Type      | PV Name      | Remark              | <b>_</b> |
| 📄 🖄 2005                                                                      | BF               | digital input 01                              | BOOL .         | Keu 1        | 1ms switching delay |          |
| 📙 🗍 🗍 🗍                                                                       | P                | digital input 02                              | BOOL           | Keu 2        | 1ms switching delay |          |
| I ⊢ñ                                                                          | Р                | digital input 03                              | BOOL           | Kev 3        | 1ms switching delay |          |
| E-≦ 3CP260.60-1                                                               | 18               | digital input 04                              | BOOL           | Key 4        | 1ms switching delay |          |
| L 31F613.9                                                                    | 1                |                                               |                |              |                     |          |
|                                                                               | - i - 11         | digital input 05                              | BOOL           | Key_5        | 1ms switching delay |          |
|                                                                               | 1.4              | digital input 06                              | BOOL           |              | 1ms switching delay |          |
| 301476.6                                                                      | 2                | digital input 07                              | BOOL           |              | 1ms switching delay |          |
| - 3DU479.6                                                                    | 4                | digital input 08                              | BOOL           |              | 1ms switching delay |          |
| ⊢ <u>≷</u> , 3AI350.6                                                         | 5                |                                               |                |              |                     |          |
| - 🔍 3A0350.6                                                                  | 6                | digital input 09                              | BOOL           |              | 1ms switching delay |          |
| - 🛼 3DM476.6                                                                  | 7                | digital input 10                              | BOOL           |              | 1ms switching delay |          |
| - <u>m</u> 3E×150.60-1                                                        | 8                | digital input 11                              | BOOL           |              | 1ms switching delay |          |
| - 3AT660.6                                                                    | 9                | digital input 12                              | BOOL           |              | 1ms switching delay |          |
|                                                                               | 10               |                                               | 0001           |              |                     |          |
|                                                                               | _ <b>_</b>       | digital input 13                              | BUUL           |              | Tms switching delay |          |
|                                                                               |                  | L digital input 14                            | BUUL           |              | Tms switching delay |          |
| * Transferring c_tra                                                          | ce ok            |                                               |                |              |                     |          |
|                                                                               |                  |                                               |                |              |                     | <u> </u> |
| U Output Debug Find in Files                                                  |                  |                                               |                |              |                     |          |
| For Help, press F1                                                            |                  |                                               |                | COM1 CP260 V | 2.10 RUN            |          |

Fig. 12.4: Variable classification

#### **5 SOFTWARE CONFIGURATION**

The software configuration enables the user to accurately set the workings of the various resources.

#### 5.1 System Settings

| B&R Automation Studio - [pro<br>File Edit View Insert Open | <b>i_001.</b><br>Projec                             | <b>GDM [Project]]</b><br>at Object Tools Window ?                                                                                                                                       |                                                                                             |                                                                      |                                                                    |
|------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                            | 10 CH                                               | × ┏   ſ d � ₽                                                                                                                                                                           | 🔍 🍋 🤍 🥑 💡                                                                                   |                                                                      |                                                                    |
| Model no.                                                  | Sk                                                  | Software Log book Descrip                                                                                                                                                               | tion                                                                                        |                                                                      |                                                                    |
| □ > PROJ_001                                               |                                                     | Module Name                                                                                                                                                                             | Version                                                                                     | Transfer to                                                          | Size (bytes 🔺                                                      |
|                                                            | BF<br>P<br>1 {<br>1.4<br>3<br>4<br>5<br>6<br>7<br>8 | CPU<br>Cyclic #1 - [10 ms]<br>F Lton<br>F Llogic1<br>E Llogic2<br>Logic2<br>Logic1<br>F Llogic2<br>Cyclic #2 - [50 ms]<br>F Llogic1<br>C c_task<br>C c_task.<br>C c_task.<br>C c_tase c | Insert Object<br>Declaration<br>Watch<br>Properties<br>V 0.00<br>V 0.00<br>V 0.00<br>V 0.00 | User RAM<br>User RAM<br>User RAM<br>User RAM<br>User RAM<br>User RAM | 768<br>336<br>388<br>464<br>424<br>528<br>1134<br>564<br>54<br>527 |
| ▲ Transferring c_trac                                      | 9<br>10<br>•<br>•                                   | Cyclic #3 (100 ms)                                                                                                                                                                      | V 0.00<br>V 0.00                                                                            | User RAM<br>User RAM                                                 | 308<br>428                                                         |
| Output Debug Find in Files                                 |                                                     |                                                                                                                                                                                         |                                                                                             |                                                                      |                                                                    |
| For Help, press F1                                         |                                                     | Line 1 of 21                                                                                                                                                                            | COM1 CP260 V                                                                                | 2.10 RUN                                                             |                                                                    |

Fig. 12.5: System Properties

| System Software                   | Properties                       |                 |            | ×                   |
|-----------------------------------|----------------------------------|-----------------|------------|---------------------|
| Communica<br>CP260                | ition  <br>Memory                | Timing<br>  Mod | F<br>ules  | Resources<br>System |
|                                   | Softwar                          | e for B&R 200   | ) PCC      |                     |
| Ident:                            | 3CP260                           | .60-1           |            |                     |
| Type:                             | 2005 CF                          | PU 2xIF-Steck   | platz, 1MF | RAM,                |
| OS Version:<br>Name:<br>Password: | V2.00<br><mark>bur</mark><br>bur |                 |            |                     |
|                                   |                                  |                 |            | Default             |
|                                   |                                  |                 | OK         | Abbrechen           |

Fig. 12.6: System Configuration

Points can be altered here that will affect the whole controller. Programming techniques will be explained and illustrated during the training.

## **5.2** Task Class Settings

| 📦 B&R Automation Studio - [proj_001.GDM [Project]]                                   |                                                              |               |             |               |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------|-------------|---------------|
| <mark>∫</mark> <u>F</u> ile <u>E</u> dit ⊻iew <u>I</u> nsert <u>O</u> pen <u>P</u> r | roject O <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u> |               |             | _ 뭔 ×         |
| 0 🖻 🖬 🕼 🗼 🛍 🕞 🗠                                                                      | ~ 🗙 🗳 🖆 🗳 😫                                                  | S 🚳 🛛 🖉       |             |               |
| Modelino. Sic                                                                        | Software Log book Description                                | on            |             |               |
| PROJ_001                                                                             | Module Name                                                  | Version       | Transfer to | Size (bytes 🔺 |
| E-105 2005 BF                                                                        | E 😰 CPU                                                      |               |             |               |
| эгз/з4.3 г                                                                           | 🖹 🖻 😂 Cyclic #1 · [10 ms]                                    | Insert Object |             |               |
| - 3CP260.60-1 1 8                                                                    |                                                              |               | User RAM    | 768           |
| T 31F613.9 1                                                                         |                                                              | <u>S</u> tart | User HAM    | 336           |
|                                                                                      |                                                              | Stop          | User HAM    | 388           |
| - <b>1</b> 3DI476.6 3                                                                | Starki                                                       | Properties    | User RAM    | 464           |
| - 🐌 3D0479.6 4                                                                       |                                                              | V 0.00        | Heer BAM    | 424           |
| - 🔍 3AI350.6 5                                                                       |                                                              | V 0.00        | User BAM    | 528           |
| - 🔍 340350.6 6                                                                       |                                                              |               | 00011110    | 1134          |
| - 🔥 3DM476.6 7                                                                       |                                                              | V 0.00        | User RAM    | 564           |
| - 3EX150.60-1 8                                                                      | L C_trace.c                                                  |               |             | 1207          |
| 3A1660.6 9                                                                           | [100 ms]                                                     |               |             |               |
|                                                                                      | - Lcyclic                                                    | V 0.00        | User RAM    | 308           |
|                                                                                      |                                                              | V 0.00        | User RAM    | 428           |
| X t Transferring c trace                                                             | 0k                                                           |               |             |               |
|                                                                                      | 0K                                                           |               |             |               |
|                                                                                      |                                                              |               |             | ㅋ             |
|                                                                                      |                                                              |               |             | ▶             |
| Output Debug Find in Files                                                           |                                                              |               |             |               |
| For Help, press F1                                                                   | Line 2 of 21                                                 | COM1 CP260 V2 | 2.10 RUN    |               |

Fig. 12.7: Task Class Properties

| User Software  |                         | ×   |
|----------------|-------------------------|-----|
| Cyclic 1 Stack |                         |     |
|                |                         |     |
|                |                         |     |
| 0              |                         |     |
| <u> </u>       | Cyclic program resource | _   |
| Resource Type  | Cyclic no. 1            |     |
| No. of objects | 2                       |     |
|                | used configured         |     |
| Duration       | msec                    |     |
| Tolerance      | 20 msec                 |     |
| Idle time      | 0 msec                  |     |
| Analog memory  | 0 1024 Byte             |     |
| Digital memory | 0 1024 Bit              |     |
|                |                         |     |
|                | OK Abbred               | hen |

Fig. 12.8: Task class configuration

This dialog box enables the user to change the parameters of the task class. This is very important when it comes to optimizing a cycle time at the end of a project.

### 5.3 Task Properties

| 🞕 B&R Automation Studio - [proj_001.6                                                    | iDM [Project]]                                          |                          |             | _ 🗆 🗵         |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-------------|---------------|
| <mark>∫</mark> <u>F</u> ile <u>E</u> dit ⊻iew <u>I</u> nsert <u>O</u> pen <u>P</u> rojec | t O <u>bj</u> ect <u>T</u> ools <u>W</u> indow <u>?</u> |                          |             | _ 8 ×         |
| D 🚅 🖬 🕼   X 🖻 🖻   🗠 🗠                                                                    | X 🖆   É 🗹 🆃 💵   🍳                                       | v 🖄 🐼 🔊 🖉                |             |               |
| Model no. Sk                                                                             | Software Log book Description                           |                          |             |               |
| □ □ S PROJ_001                                                                           | Module Name                                             | Version                  | Transfer to | Size (bytes 🔺 |
| E+05 2005 BF<br> -0, 3PS794.9 P                                                          | ⊡ 🝘 CPU<br>中C Cyclic #1 - [10 ms]                       |                          |             |               |
|                                                                                          |                                                         | Insert Object            | User RAM    | 768           |
|                                                                                          |                                                         | Insert Eile              | User RAM    | 336           |
|                                                                                          |                                                         | Open                     | User RAM    | 388           |
| - 🔥 3DI476.6 3                                                                           | □ □ st st_task i<br>□ □ □ Cuolio #2 - [50 ma]           | Declaration              | User HAM    | 464           |
| - 🐌 3D0479.6 4                                                                           |                                                         |                          | User BAM    | 424           |
| - 🎘 3AI350.6 5                                                                           | ⊡-C ctask                                               | <u>w</u> atch            | User RAM    | 528           |
|                                                                                          | L L C c_task.c                                          | Tra <u>c</u> e<br>Disbus |             | 1134          |
| - 3DM476.6 7                                                                             | E-C                                                     | Depug                    | User RAM    | 564           |
|                                                                                          | └─ <b>C</b> c_trace.c                                   | <u>S</u> tart            |             | 1207          |
|                                                                                          |                                                         | Stop                     |             |               |
|                                                                                          |                                                         | Erase From Target        | User RAM    | 308           |
|                                                                                          |                                                         | Upload From Target       |             | 420           |
| * Transferring c_trace ok                                                                |                                                         | Iransfer to              |             |               |
|                                                                                          |                                                         | Disa <u>b</u> le         |             | 크             |
|                                                                                          |                                                         | <u>R</u> ename           |             | ┍╧║           |
| Debug Find in Files                                                                      |                                                         | Properties               |             |               |
|                                                                                          |                                                         |                          |             |               |
| For Help, press F1                                                                       | JLine 3 of 21                                           | JCOM1 JCP260 V2          | RUN         |               |

Fig. 12.9: Task Properties

| Properties       |                 |            | × |
|------------------|-----------------|------------|---|
| General Memory   |                 |            |   |
| =                |                 |            | 1 |
| ±                | k_ana           |            | I |
| Туре:            | Ladder Diagra   | am         |   |
| Init Subroutine: | No              |            | I |
| Resource:        | Cyclic #1 - [1  | l0 ms 🔽    | l |
| Schema status:   | $\odot$ enabled | O disabled | l |
| Rebuild info:    | $\mathbf{C}$ on | O off      |   |
| Transfer to:     | RAM             | •          |   |
|                  | Project:        |            |   |
| Version:         | 0.00            |            |   |
| Date:            | 19.06.1998      |            | l |
| Size:            | 224             | Byte       |   |
|                  |                 |            |   |
|                  | OK              | Abbrechen  |   |

Fig. 12.10: Task Configuration

Dialog box for the Task parameter. For the configuration of the task class membership.

The "**Transfer to**" is especially important. When a task is tested it should not be downloaded in to RAM but into **USER ROM**. Only then is the program secured against power cuts.

## 5.4 Project saving

#### 5.4.1 Saving mediums

**SRAM, FIXRAM, FPROM** or **MEMCARD** are all available as saving mediums on the controller.

#### SRAM The SRAM section of the APM is used as memory during **program setting**.

Transferring of the object occurs via :

#### **Project: Transfer To Target**

The individual objects are saved in their operational names on to the read only memory.

After a coldstart the entire SRAM is deleted!

Buffering of the SRAM is as follows: (see buffer concept)

- Rechargeable battery
- Battery

FIXRAM FIXRAM is part of the SRAM's, which retains its data after a cold start. A section (16, 32 k Byte, ..) of the SRAM can be defined as FIXRAM via the dialog box "System Property" (Fig. 8.5 and 8.6).

**Data modules** are saved in FIXRAX which have been changed by tasks (data acquisition, new constructions or machine parameters....)

To save objects in FIXRAM it is necessary to set parameters (when dealing with task parameters) the following point:

Transfer to: FIXRAM

After which the project must be downloaded to the controller.

## **Project: Transfer To Target**

| SRAM                     |
|--------------------------|
| FIXRAM<br>(configurable) |
| FPROM                    |
|                          |
|                          |

In FIXRAM objects are saved in the following way:

< Delete >

**Object: Erase from PCC** 

**Project: Clear Memory: Erase FIXRAM** 

## FPROM The FPROM section of the USER ROM is used as a memory for **fully tested projects**.

To save objects in PROM it is necessary to set parameters for "Task Property" (Fig. 8.9 and 8.10):

Transfer to: **USERROM** 

When **deleting from the PROM section or repeatedly burning**, the old object is rendered unrecognizable.

| APM - PROM |
|------------|
| Task1      |
| Task2      |
| Task1      |

**FPROM** can be deleted directly from AS:

**Project: Clear Memory: Erase FLASH** 

MEMCARD The MEMCARD for the CP260 operates exactly like the FPROM.

### Data Module USER FLASH

- The **64 kByte** area DM USER FLASH can be **deleted and written with function blocks**, without affecting the rest of the flash area.
- This makes it possible to create and manage **data modules** in nicht flüchtigen memory using programs.
- The DM USER area is available starting from PCCSW V2.0.
- The FIXRAM is therefore not as relevant as before.
- DM USER FLASH is not available with the B&R2010 and CP15x!!

| SRAM                     |
|--------------------------|
| FIXRAM<br>(configurable) |
| FPROM                    |
|                          |
| DM USER FLASH            |

## 5.4.2 Memory Mediums Summary:





## **SEMINAR REVIEW**

| 1 | SEMINAR REVIEW              | 2 |
|---|-----------------------------|---|
|   |                             |   |
| 2 | SEMINAR OVERVIEW            | 3 |
| _ |                             |   |
| 3 | SALES AND SUPPORT LOCATIONS | 4 |

#### **1 SEMINAR REVIEW**

- Introducing B&R
- System Overview
- Hardware
- Programming System
- B&R2000
- Ladder Diagram
- Instruction List
- Structured Text
- Automation Basic
- Service Info
- Project Management

B&R2000

POSITIONING

VISUALIZATION

MULTI

Training ASINT

### **3** SALES AND SUPPORT LOCATIONS

For up to date addresses and product information look up our web pages:

## HTTP://WWW.BR-AUTOMATION.COM

