
B&R Automation StudioTM

Training ASPROG

STNASPROG-E

B&R AUTOMATION STUDIOTM

PROGRAMMING

Model No.: STNASPROG-E

Version: 2.0
MP/SP/ZR 04/2001

Schulung / Training

1. Seminar StartB&R Automation StudioTM

Page 1.1Training ASPROG

SEMINAR START

1 INTRODUCTION ... 2

2 SEMINAR OVERVIEW ... 3

3 SCHEDULE ... 4

Schulung / Training

1. Seminar StartB&R Automation StudioTM

Page 1.2Training ASPROG

1 INTRODUCTION

General Information
In the next few days - for the duration of this seminar - you will be working
together with your seminar leader.The technical expertise of your seminar
leader is not the only factor responsible for your personal success during this
seminar.

Success depends on cooperation and interaction between the course members
and the seminar leader, as well as the attitude and application of individual
course members towards teamwork and the course in general.

Introduction Seminar Leader
Please allow the seminar leader to introduce him/herself. Make notes if necessary.

Introduction Course Members
You should get to know your colleagues as you will be working together as a group
and also in smaller groups during the seminar (name, company, product, application
area).

Your personnal success on this course also depends on your expectations.

1. Seminar StartB&R Automation StudioTM

Page 1.3Training ASPROG

2 SEMINAR OVERVIEW

� B&R Automation Studio

� B&R Automation Runtime

� B&R Automation Target

� B&R Automation Net

� Project Guidelines

� SFC Seqential Function Chart

� AB Automation Basic

� Data Handling

� TPU Code Linker

� Library Manager Introduction

� ANSI C

1. Seminar StartB&R Automation StudioTM

Page 1.4Training ASPROG

3 SCHEDULE

The time available during the seminar is a very important factor.

Start

Lunch Braek

End

Breaks We will taking short breaks at various intervals through out the seminar for tea and
coffee and to give the smokers the chance to light up!

Successful teamwork not only relies on your personnal motivation, but also on
meeting the expectations of your seminar leader.

The seminar leader expects:

That all course members are prepared to take an active role and cooperate with other
course members during the course of the seminar. “Nobody is perfect”, this includes
your trainer, constructive feedback is always welcome.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.1Training ASPROG

B&R AUTOMATION STUDIO

1 OVERVIEW... 2

2 B&R AUTOMATION STUDIO ... 3

2.1 One Tool Many Targets .. 3

3 AS DIRECTORY STRUCTURE ... 4

4 PROJECT DIRECTORY STRUCTURE 5

5 AS PROJECT .. 6

5.1 Opening Projects .. 6

5.2 LAD Task ... 8

5.3 C Task ... 9

5.4 Variable Declaration ... 10

5.5 Transferring Projects ...11

6. PROJECT SETTINGS ... 13

6.1 IEC Editor .. 14

6.2 Ladder Printer Settings ... 15

6.3 C Compiler ... 16

6.4 Build and Transfer .. 17

6.5 Motion .. 18

6.6 Library Manager ... 19

6.7 Naming Conventions .. 20

Schulung / Training

2. B&R Automation StudioB&R Automation StudioTM

Page 2.2Training ASPROG

1 OVERVIEW

During the ASINT course, we got to know Automation Studio as a general tool. Our
task in this course is to learn about AS features in greater detail, which will help
you use the full range of advantages for many different types of applications.

B&R Automation Studio
A brief overview of the B&R Automation concept with B&R Automation Studio,
B&R Automation Net, B&R Automation Runtime and B&R Automation Targets.

AS Directory Structure
The question: “Where can I find it?”, will be answered in this chapter.
Finding header files, archive files, system files, etc.

Project Directory Structure
The question: “Where should I save it ?” is answered in this chapter.
Storing source files, executable BR files, project info files, etc.

AS Project
Brief description of the AS project structure and an overview of the most important
points from creation to downloading a project.

Project Settings
Overview of the global project parameters.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.3Training ASPROG

2 B&R AUTOMATION STUDIO

2.1 One Tool Many Targets

There is a programming tool, B&R Automati-
on Studio, that can be used with many diffe-
rent target systems. This enables simple
scaling and optimal compatibility with the
automation platform. B&R Automation Studio
communicates via B&R Automation Net using
B&R Automation Runtime. B&R Automation
Runtime runs on various B&R Automation
targets.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.4Training ASPROG

3 AS DIRECTORY STRUCTURE

You can find your way around the AutomationStudio structure quickly and easily
using the following directory list which provides an overview of the directory
contents. This structure is set up when you install Automation Studio.

Automation Studio installation path
AS main directory
GNU documentation “Index.html”
ANSI C specific files
B&R hardware configuration files
B&R library files
B&R motion components
B&R system modules, operating systems
Templates for DOS/AS project conversion
B&R TPU components
AS executable files
Install / uninstall information
Documentation
Help files
PVI Logger – log files
PVI executable files
Panel Studio files
Examples
Files for special modules
Tools

Fig. 2.1: B&R Automation Studio directories

2. B&R Automation StudioB&R Automation StudioTM

Page 2.5Training ASPROG

4 PROJECT DIRECTORY STRUCTURE

When you create a new project with AutomationStudio, it automatically creates a
project structure and gives it the directory name: “Project name.pgp”.

All project specific data, information, sources, etc. are stored in a directory structure
under this directory. This allows you to move or copy the project directory at a later
date, and to make it easily accessible for other programmers.

The project directory has the following structure:

Project „RIO_2005“
Database information
Database infos about libraries used
Project specific data for AS
Libraries used in the project
Library „Runtime“
Help files for the library
Compiled library for Intel platform
Compiled library for Motorola platform
Source codes for the library
AS program modules
Rack name for this project
CPU name in this rack
Include directory for C tasks
Source directory for C tasks

Fig. 2.2: AS project directory structure

Note
The last two directories “inc” and “src” can be created by the user if C tasks are
used.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.6Training ASPROG

5 AS PROJECT

5.1 Opening Projects

In order to be able to open an existing project, select the main menu item

 File: Open Project.

Select the respective GDM file, e.g.: “RIO_2005.GDM” and activate it with [Open].
GDM stands for Graphic Design Method.

This GDM file is in the project directory and has the name “prj_name.pgp”.

Fig. 2.3: Open Project dialog box

2. B&R Automation StudioB&R Automation StudioTM

Page 2.7Training ASPROG

A project is an entire system or machine and can be separated in the hardware
configuration into Project, PCC, and CPU layers. On the software page, the CPU is
separated into the individual task classes with their tasks and system modules.

This has a tree structure in the project window.

a ... Title bar with name of the open project
b ... Menu bar
c ... Toolbar
d ... Root directory of the project tree is the project name
e ... Controller name, PCC name

f ... The root directory of the software tree is the selected CPU
g ... Task classes with defined cycle time
h ... LAD Task
i ... C task, can consist of several files
k ... C task source file
m ... System modules

f

g

h

i

k

m

s

b

c

d

e

Fig. 2.4: Overview of Automation Studio project

2. B&R Automation StudioB&R Automation StudioTM

Page 2.8Training ASPROG

5.2 LAD Task

A new task can be created using the Object Wizard by selecting Insert: New
Object: LAD Task. The source code for a LAD task (*.SRC extension) is always
placed in the CPU program module directory:

Fig. 2.5: New LAD task in the software tree

Fig. 2.6: Source code in the project structure

2. B&R Automation StudioB&R Automation StudioTM

Page 2.9Training ASPROG

5.3 C Task

Using Insert: New Project: C Task.
When inserting a C task, the C files are normally copied to the CPU program
module directory (*.c/*.h/*.s/*.a/*.o). Save the C files in a subdirectory to improve
clarity of the project.

Also see Project Guidelines II or chapter ANSI C.

Fig. 2.8: Source code of the C task in the project structure

Fig. 2.7: New C task in the software tree

2. B&R Automation StudioB&R Automation StudioTM

Page 2.10Training ASPROG

5.4 Variable Declaration

� Name
All variables are accessed using their symbolic names.

� Type
Types are automatically assigned for I/O. The programmer has to enter the
type for internal variables used in tasks.

� Scope
Internal variables should always have the smallest possible scope.
I/O and variables for communication between task must be global.

� Attribute
Defines hardware assignments, internal variables or constants.

� Owner
The owner e.g.: of a L structure or constant is shown.

� Value
Initialization value. Should be remnant. Variables should be initialized in the
INIT SP for the task.

� Remark
Additional information or standard text.

Fig. 2.10: All global variables

Fig. 2.9: CPU variable declaration pop-up dialog box

The menu Open: Declaration opens the respective variable declaration. If the

CPU is selected, all global variables are shown.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.11Training ASPROG

5.5 Transferring Projects

The main menu item Project: Transfer to Target transfers all the software

modules to the controller. An automatic software compare is carried out between
the PCC and the project before the transfer is made. Only modules currently not
available or with newer creation dates are transferred to the controller.

The target memory for each individual module can be selected by marking the
object with the cursor and selecting the main menu item
Object: Transfer to: Target Memory.

If AS finds one or more differences between the project contents and the PCC, it
informs the programmer with the info message “Software Conflict” and displays the
following dialog box.

Note
Software Conflict Recognition

� Delete Object from the target
The module identified as being different is deleted from the controller.

IMPORTANT
modules identified as “disabled” are also deleted from the controller.

� Ignore Object on the target
The module is not changed. If it is a task with I/O operations, conflicts can
occur.

Fig. 2.11: Software Conflict dialog box

2. B&R Automation StudioB&R Automation StudioTM

Page 2.12Training ASPROG

Example

� Create a LAD task with a latch.

� Transfer the project and test the task.

� Rename the task and transfer the project again.

Original Task:

Project Name: as_rev
Ladder Diagram Name: re_latch

Resource: C#2

Target memory FLASH PROM

Changed Task:

Project Name: as_rev
Ladder Diagram Name: wd_new

Resource: C#2

Target memory RAM

Schulung / Training

2. B&R Automation StudioB&R Automation StudioTM

Page 2.13Training ASPROG

6. PROJECT SETTINGS

The parameters described in the following sections are globally valid for the current
project.

The project settings can be found under Project: Settings.

Fig. 2.12: Opening project settings

2. B&R Automation StudioB&R Automation StudioTM

Page 2.14Training ASPROG

6.1 IEC Editor

Fig. 2.13: IEC Editor settings

� Autodeclaration
If new variables are entered, the varia-
ble declaration for these variables is
automatically opened when
Autodeclaration is activated.

� Autoformat
The source code is automatically
formatted, indentation and colored
highlighting of keywords.

� Tab-Width
Width of the tabulator.

� Font
Font to be used in the editors.

� Mark
Representation of marked text.

� Monitoring options
If monitor mode is active, the editor window is split in two sections. The
right section of the window shows the variables and their values. With
„Width of monitor window“, you can set the width of the right section of the
window as a percent of the total width of the window. The value „Distance
of two variables“ determines the distance between two variables in the right
section of the window if several variables are shown in a line.

� Colors
You can define different colors for clear representation of line numbers,
breakpoints, etc.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.15Training ASPROG

6.2 Ladder Printer Settings

� Symbol Details
Which details should be printed for
symbols.

� Print Order
Order of the printout if the LAD does
not fit on a page, is either too wide or
too long.

� Symbol Print Size
Size of the symbols in millimeter

Fig. 2.14: Ladder Print Settings

2. B&R Automation StudioB&R Automation StudioTM

Page 2.16Training ASPROG

6.3 C Compiler

� Additional build options
Information concerning options can be
found in the GNU compiler
documentation

� Include directories
The list contains all include directories
used by the compiler.

Fig. 2.15: C Compiler

2. B&R Automation StudioB&R Automation StudioTM

Page 2.17Training ASPROG

6.4 Build and Transfer

� Generate Code for PP
All PP specific compiler options are
used.

� Locater local variables at
variable area = DPR or USR RAM

� ASCII import
Options for ASCII import

� Transfer
Do not transfer library information to
target system. The library information
contains descriptions for calling FBKs
which are only required for project
creation. This information is not needed
on the target system.

Fig. 2.16: Build and Transfer

2. B&R Automation StudioB&R Automation StudioTM

Page 2.18Training ASPROG

6.5 Motion

Fig. 2.17: Motion

� NC language
Language of the NC structures (Englich
or German).

2. B&R Automation StudioB&R Automation StudioTM

Page 2.19Training ASPROG

6.6 Library Manager

Fig. 2.18: Library Manager

� Library directories
List of directories to be used when
searching for libraries.

� Standard directory
The target memory for the libraries on
the target system can be set here.

2. B&R Automation StudioB&R Automation StudioTM

Page 2.20Training ASPROG

6.7 Naming Conventions

Fig. 2.19: Naming conventions

� Identifiers
Rules only according to the IEC
standard or with B&R extensions.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.1Training ASPROG

B&R AUTOMATION RUNTIME

1 OVERVIEW... 2

2 AUTOMATION RUNTIME ... 3

3 INDIVIDUAL SYSTEM CONFIGURATIONS 5

3.1 Memory Configuration ... 6

3.2 Software Object Configuration .. 7

3.3 System Configuration ... 8

3.4 Communication Configuration ... 9

3.5 Interfaces .. 10

3.6 Timing Configuration ..11

3.7 Resource Configuration .. 12

4 ERROR LOGBOOK ... 13

5 ONLINE INFORMATION .. 15

5.1 System Information .. 15

5.2 CPU Memory Information ... 15

5.3 Real-time Clock ... 16

6 I/O HANDLING AND TIMING .. 17

6.1 I/O Image Handling .. 18

7 SYSTEM STRENGTHS ... 20

7.1 Strengths of the B&R Multitasking System 20

7.2 Strengths of the B&R I/O System 21

Schulung / Training

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.2Training ASPROG

1 OVERVIEW

B&R Automation Runtime
B&R Automation Runtime represents the layer between B&R Automation Studio
and the B&R Automation Target.

Individual System Configuration
The PCC system is preconfigured by B&R. The task class times and memory sizes
offered can be easily configured by the user. However, further adaptations should
only be made by experienced users under B&R’s guidance. Also see online help.

Error Logbook
System messages are automatically entered in the error logbook. They can also be
entered by an application using standard functions.

Online Information
General system, time and memory information can be requested and changed here.

I/O Timing
B&R provides customers with a big advantage, all systems can be programmed in
the same way with the same program. This makes it easy for the user to make
changes within the B&R2000 Family.

System Strengths
B&R Highlights

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.3Training ASPROG

2 AUTOMATION RUNTIME

B&R Automation Runtime represents the layer
between B&R Automation Studio and the
B&R Automation Target. The connection is
established via B&R Automation Net. The
physical media used for communication is not
important.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.4Training ASPROG

O
P

S
Y

S
K

E
R

N
E

L
S

Y
S

C
O

N
F

E
X

E
R

M
O

P
B

_
L

IB

F
R

M
D

R
V

N
E

T
2

0
0

0

R
IO

T
R

A
P

B
U

R
T

R
A

P

SYSTEM
FUNCTIONS USER / APPLICATION DATA

E
X

C

ID
L

E

IR
Q

H
S

#
1

T
C

#
1

T
C

#
2

T
C

#
3

H
S

#
4

H
S

#
3

H
S

#
2

T
C

#
4

C
o
m

m
u
n
ic

a
ti
o
n

IO
-E

rr
R

u
n
ti
m

e
2
0
1
0

(I
/O

B
u
s
)

D
I4

0
0

3
m

s
e
c

2
0
1
0

/
2
0
0
5

R
IO

-S
Y

N
C

2
0
1
0

H
W

-T
im

e
r

5
m

s
e
c

2
0
1
0

H
W

-T
im

e
r

7
m

s
e
c

2
0
1
0

H
W

-T
im

e
r

9
m

s
e
c

1
0

m
s
e
c

(2
0

m
s
e
c
)

5
0

m
s
e
c

(5
0

m
s
e
c
)

1
0
0

m
s
e
c

(1
0
0

m
s
e
c
)

1
0

m
s
e
c

(3
0
.0

0
0

m
s
e
c
)

INIT LOCAL

LOCAL

LOCAL

TASK 4

TASK 5

TASK 6

INIT LOCAL

LOCAL

LOCAL

TASK 1

TASK 2

TASK 3

INIT LOCALTASK 1

G
L
O

B
A

L
V

A
R

IA
B

L
E

S

p
e
rm

a
n
e
n
t

re
m

n
a
n
t

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

O
U

T
P

U
T

IM
A

G
E

F
IX

R
A

M

D
A

T
A

M
O

D
U

L
E

(R
e
a
d
/W

ri
te

)

(R
e
a
d

o
n
ly

)

B
&

R
2

0
0

0
C

P
U

VAR

Main

MODULE

Main

F
L

A
S

H

R
A

M
,
F

L
A

S
H

R
A

M

F
L

A
S

H

Schulung / Training

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.5Training ASPROG

3 INDIVIDUAL SYSTEM CONFIGURATIONS

Each user has the possibility with Automation Studio to easily configure the PCC
according to individual requirements:

� Memory, e.g.: PCC global variable pool, digital and analog, FIX RAM,
temporary memory

� Stack , e.g.: Task class stack C#1..C#4, operating system data stack

� Task class timing, e.g.: Duration and tolerance, idle time

We normally work with the standard settings. But if it is necessary to change one of
the items listed above, make the change in the Object Properties Edit: Properties.

Note
Here, we also recommend using the shortcut menu by clicking on the object with
the right mouse button !

Now we will discuss some important configurations. Information concerning the
other configurations can be found in the online help.

If you lose track of the changes you have made, click on the [Default] button to
reset the defaults.

Fig. 3.1: Open the
CPU properties

Fig. 3.2: System configuration

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.6Training ASPROG

3.1 Memory Configuration

� Analog
PCC global PVs > Bit

� Digital
PCC global PVs, Bit

� Analog/Digital permanent
Permanent memory = cold restart safe.

� FIX RAM
Cold restart safe RAM memory. The size is a multiple of 16 kByte.

� TMP RAM
Temporary RAM memory. Initialized with 0 during each warm restart.

Fig. 3.3: Memory properties

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.7Training ASPROG

3.2 Software Object Configuration

Fig. 3.4: Software object properties

� Cyclic objects
Cyclic objects are application tasks.

� User non-cyclic objects
are required for special system expansions. Can only be created together with
B&R.

� Sys. non-cyclic objects
Operating system expansions.

� B&R objects
all modules that can be transferred to the controller, e.g.: tasks, data
modules, etc.

� Logbook size
certain system messages are also saved in the system logbook.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.8Training ASPROG

3.3 System Configuration

� Queues
are used for communication between tasks.

� Semaphores
are variables which can be used to synchronize access of common memory
areas.

� AVT entries
Address distribution tables. Used for library functions.

� Stack
Operating system data memory. (automatically set starting with AR 2.22)

� System modules
Number of hardware system modules.

� Reboot mode after fatal error
If a fatal error occurs when starting the system, the system goes into
diagnostic mode. That means the application is stopped.
However, if “cold restart” is set, the system first attempts a cold restart.
Then the application can continue running. If the error is still there, the
system boots again in diagnose mode.

Fig. 3.5: System properties

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.9Training ASPROG

Fig. 3.6: Communication properties

3.4 Communication Configuration

� Communication channels
Corresponds to the number of interfaces that should be used at the same time
for communication.

� Device driver
Drivers for the various protocols (Net2000, Frame Driver, etc.)

� Force commissions
Number of force commissions that can be active at the same time.

� PV tables
A table contains max. 256 variables

� Logical variable lists
are used for network communication.

� Physical variable lists
are used for online communication

� Connections
The number of parallel connections (INA) allowed can be set here.

� Turbo Mode (starting with AR 2.20)
When activated, the INA services are also handled during idle time.
That means faster transfer of tasks, faster online communication, etc.
However, this mode only makes sense if enough idle time is available.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.10Training ASPROG

3.5 Interfaces

Fig. 3.7: Interface properties

As default, AutomationRuntime defines the first three interfaces on the local CP
for communication with AutomationStudio.

If additional interfaces are required for online communication with
AutomationStudio, or special parameters are needed, they can be configured as
parameter sets in this dialog box.

� Interface
Several interfaces can be available on an interface module. These interfaces
are numbered. The desired interface is selected using this parameter.

� Type
Entry for the physical connection, e.g.: RS232, CAN, ETHERNET, etc.

� Slot
Entry for the module slot number where the selected interface is found.

� Subslot
Entry for the subslot on the module where the desired interface is found.

� Parameter
Each interface type has default parameter. Changes can be made here, e.g:
Baudrate.

� Modem Parameter
Special modem settings.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.11Training ASPROG

3.6 Timing Configuration

Fig. 3.8: Timing properties

� Delay after cold/warm restart
These times are delays that must pass before
I/O modules or system modules can be accessed. In this way, these modules
can complete their initialization before being accessed by the CPU.

� Power failure reporting delay
after a power failure, the CPU executes a warm restart. For applications with
expansion, it is possible that the expansion drops out before the CPU and the
CPU activates service mode.
When the voltage returns, the CPU starts in service mode. If a time is entered
here, the CPU waits before activating service mode.

� Allowed system time violation
The operating system is also monitored for cycle time violations. A
maximum system cycle time violation can be set here, in 10ms steps.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.12Training ASPROG

Fig. 3.9: Resource properties

3.7 Resource Configuration

� No. of cyclic resources
Number of cyclic task classes possible.

� No. of timer resources
Number of timer task classes.

� Enable EXC class
Enable the exception task classes.

� Enable IRQ class
Enable interrupt task classes, only possible on B&R2010.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.13Training ASPROG

4 ERROR LOGBOOK

All errors that trigger an EXCEPTION are entered in the system logbook. If an
exception is triggered, all outputs are switched off. The application on the PCC is
stopped. To determine the cause of the error, we will select:

• The CPU in the hardware tree
• The tab “Logbook” in the software tree

Then a window is opened which shows the last messages in plain text. The top
message is the newest.

Some user actions are entered in the logbook, but the application continues running,
e.g.: changing the time. Such entries are called WARNINGS.

If the operator exceeds defined limit values, a user entry can be created using a
function and the PCC boots in service mode.

In this case, the service technician must have a reference list of these entries. An
action list is to be added to this reference list.

Time Error Information Module Description

10.12.98 15:45:23.00 2075 16#00000000 Syss Warning: Time/date changed

Tab. 3.1: System entry – changed CPU time

Time Error Information Module Additional Information

??.??.?? ??:????.?? 2222 16#12345678 ???? Warning: ????????

Tab. 3.2: User entry in logbook

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.14Training ASPROG

Example
Read the last entries from the system logbook and analyse the entries with your
trainer.

� Read the entries

� Remove an I/O module accessed by the task with power applied. Then read
the system logbook again.

Schulung / Training

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.15Training ASPROG

5 ONLINE INFORMATION

5.1 System Information

If you click on the CPU symbol with the right mouse button in the hardware tree,
the following dialog box is shown.

Fig. 3.10: Online PopUp

Fig. 3.11: CPU Info System dialog box

In the System dialog box, information concerning the boot mode, battery, operating
system and node number are shown if available.

5.2 CPU Memory Information

Information concerning free memory is output here.

Fig. 3.12: CPU memory properties

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.16Training ASPROG

5.3 Real-time Clock

The time can be changed on the controller in the Date/Time dialog box. This dialog
box shows the current time on the controller. This is not necessarily the same as the
time on PC.

Fig. 3.13: CPU Info Date/Time properties

With [Get PC time], the current PC time is set in the dialog box. The settings can
transferred to the target using [Set Target time] and the time change is entered in the
system logbook.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.17Training ASPROG

6 I/O HANDLING AND TIMING

We will discuss the IO Handling and Timing here. The following points will be
covered:

� I/O Image Handling

� Timing B&R2003

� Main Rack

� CAN I/O

� RIO

� Timing B&R2005 / B&R2010

� B&R2005 Main Rack

� B&R2010 Main Rack, B&R2005 and B&R2010 Expansion

� B&R20xx CPU with Remote B&R2005 / B&R2010 Slaves

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.18Training ASPROG

6.1 I/O Image Handling

Input images are read separately for each task class.
All task classes have a common output image.

Several tasks are executed in two task classes on a PCC:

0

0

10

10

20

20

30

30

40

40

50 60
Time [ms]

50 60
Time [ms]

System Manager

System Manager

Write Output Image

Write Output Image

CPU

CPU

I/O Processor

TC#1
TC#2

TC#1
TC#2

Read Input Image TC#1
Read Input Image TC#2

Read Input Image TC#1
Read Input Image TC#2

B&R2005: Expansion, Remote I/O
B&R2010: Main Rack, Expansions, Remote I/O

B&R2005: Main Rack

The representations above show the following points clearly:

� The respective input images are read at the beginning of the task class.

� The output image is written at the end of run time for the task class.

� Differences between timing with and without an I/O processor.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.19Training ASPROG

6.1.1 B&R2003 / B&R2005 Main Rack

In this case, the main processor has to emulate the I/O processor. The main
processor processes the system manager, then emulates the I/O processor and reads
the inputs

After this, the task class is processed.

During run time, the main processor emulates the I/O processor again and writes the
outputs. The main processor is also responsible for I/O transfer.

6.1.2 B&R2005 Expansion and Remote I/O, B&R2010 with I/O Processor

This I/O processor reads the inputs parallel to system manager processing and
writes the outputs at the end of the task class parallel to processing the next task
class.

This multiprocessor concept in the CPU reduces load on the main processor caused
by data transfer.

The I/O processor is responsible for I/O transfer. The remote IO master is
responsible for remote IO transfer.

Note
If exact I/O times are required for an application, the exact information can be
calculated by referring to the user’s manual or using an Excel file.

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.20Training ASPROG

7 SYSTEM STRENGTHS

7.1 Strengths of the B&R Multitasking System

• Deterministic Multitasking
Predictable task timing

• Different Task Classes
Task classes are called in different, fixed time axes.
Additional tasks do not change the timing.

• Variable Task Class Cycle Times
Optimal timing settings for the different task classes.

• Optimal Processor Load

• Priorities for Task Classes
Timer task class 1 has the highest priority of the cyclic task classes.

• Flexible System Software Updates for the Operating System

• System Logbook
In the system logbook, an entry is always written describing the cause for a
system reset. This logbook can also be used by the programmer, to check
certain defined limits. If a limit is exceeded, an entry is made. In this way, the
cause of a system standstill can always be determined.

• Testing Individual Tasks
Start and stop tasks online, etc.

Schulung / Training

3. B&R Automation RuntimeB&R Automation StudioTM

Page 3.21Training ASPROG

7.2 Strengths of the B&R I/O System

� Separation of the I/O Bus
The I/O bus can be built with a decentralized structure using expansions and
remote I/O.

� Secure Protocol for I/O Bus
I/O data is transferred using a secure protocol and stored in the DPR.

� Reducing Load on the CPU
I/O data transfer is handled by the I/O processor (B&R2010).
Bit and byte masking is carried out by the DPR controller.
Servicing the interfaces is carried out by the RISC.
In this way, the maximum CPU capacity is available for application tasks.

� Consistent I/O Images
The input states available at the beginning of the task class and remain
available for the entire task class.

� Symbolic Process Variables
I/O points are accessed in the program using symbolic names. The link
between symbolic names and the I/O points can be defined at any time:

� Taken from CAD programs

� Predefined during programming

� When creatig code in LAD, C files, or when compiling

Schulung / Training

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.1Training ASPROG

B&R AUTOMATION TARGETS

1 OVERVIEW... 2

2 B&R AUTOMATION TARGET .. 3

3 B&R AUTOMATION TARGET 2003 .. 4

3.1 Main Unit ... 4

3.2 Expansion ... 6

3.3 CAN I/O Projects ... 7

4 B&R AUTOMATION TARGET 2005 .. 12

4.1 Main Unit ... 12

4.2 Expansion ... 14

4.3 RIO Projects ... 15

5 B&R AUTOMATION TARGET 2010 .. 20

5.1 Main Unit ... 20

5.2 Expansion ... 23

6 B&R AUTOMATION TARGET LOGIC SCANNER 26

6.1 Main Unit ... 26

6.2 Expansion ... 27

7 B&R AUTOMATION TARGET IPC2XXX 28

7.1 Main Unit ... 28

7.2 Expansion ... 29

8 B&R AUTOMATION TARGET IPC5XXX 30

8.1 Main Unit ... 30

8.2 Expansion ... 31

9 B&R2000 OVERVIEW... 32

Schulung / Training

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.2Training ASPROG

1 OVERVIEW

B&R Automation Target
A brief overview of the B&R Automation concept with B&R Automation Studio,
B&R Automation Net, B&R Automation Runtime and B&R Automation Targets.

B&R Automation Target 2003
The most important data for the B&R2003 PCC System. Hardware possibilities,
expansion possibilities with RIO and CAN I/O.

B&R Automation Target 2005
The most important data for the B&R2005 PCC System. Hardware possibilities,
expansion possibilities with expansion and RIO.

B&R Automation Target 2010
The most important data for the B&R2010 PCC System. Hardware possibilities,
expansion possibilities with expansion and RIO.

B&R Automation Target Logic Scanner
The combination of an IPC and LS251 results in a very powerful device for
visualization and control tasks.

B&R Automation Target IPC2xxx
The most important data and hardware possibilities.

B&R Automation Target IPC5xxx
The most important data and hardware possibilities.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.3Training ASPROG

2 B&R AUTOMATION TARGET

Possible Automation Targets:

B&R Automation Target refers to the
hardware platform, where B&R Automation
Runtime is running.
This can be a B&R2003, B&R2005,
B&R2010, IPC with Logic Scanner, IPC with
B&R Automation Runtime (AR010).

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.4Training ASPROG

3 B&R AUTOMATION TARGET 2003

3.1 Main Unit

� The B&R2003 is used as an intelligent terminal because of ist structure
and connection technology.

� You can select between the intelligent PCC version and the unintelligent
remote I/O version which reduces cabling costs.

� The special terminal blocks, which have separate terminals for signal,
ground and supply, allows fast and easy cabling.

� The combination of different screw-in modules on a CPU or analog
interface module guarantees the highest degree of modularity and the
smallest size.

CPU
Interface CPU I/O bus with secure data transfer; max. 8 logic modules

0 1 2 3
Fig. 4.1: Module rack + CPU with CP interface

CPU I/O bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.2: Module rack + CPU

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.5Training ASPROG

3.1.1 Power Supply

CPU / CAN Bus Slave Module / RIO Slave Module
Supply voltages in the DC range from 18-30V and in the
AC range from 82-264V, 47-63Hz. The power supplies are protected on the
primary side by a fuse and on the secondary side by an internal current limiter.

3.1.2 Operating System

All B&R Automation Targets are compatible with regard to operating system
functions and programming. A modem capable RS232 and a CAN interface are
available.

3.1.3 Online

The first three interfaces can be used as online interface by the operating as default.

3.1.4 Application Program Memory

The application memory is on board. SRAM and FPROM are available as memory
media. The SRAM is used for program development. The FIXRAM as part of
SRAM for data that must remain after a cold start. The FPROM is used to store the
operating system and completely tested projects including documentation.

3.1.5 I/O Modules and Terminals

The B&R2003 system offers a palette of

Digital Modules Relay or transistor version

Analog Modules 0-20mA and ±10V ... Resolution:12Bit

PT100 / FeCuNi ... Resolution: 1/10 or 1/100°C

Interface and Counter Modules

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.6Training ASPROG

3.2 Expansion

3.2.1 RIO

The B&R2003 can be used as Remote I/O Slave for long distances, in a 1200m
segment, with 3 repeaters up to 4800m and provides very fast communication, up
to 2MBaud. The connection is made using RS485 twisted pair lines.

RIO
SLAVE I/O bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.4: Module rack + RIO

3.2.2 CAN I/O

The B&R2003 can be used as master and also as slave for CAN I/O expansions.
The maximum distance extends over 1000m. The max. transfer speed is 500kBaud.
The connection is made using a
3 conductor CAN cable.

The CAN bus slave module has ist own configuration memory for CAN node
parameters. If this memory is not used, the node is started using the standard
configuration.

CAN
SLAVE I/O bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.3: Module rack + CAN I/O

3.2.3 Networks

� CAN with multimaster network

� B&R NET2000 as master/slave network with slave cross traffic

� ETHERNET to connect with higher level systems

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.7Training ASPROG

3.3 CAN I/O Projects

To work with CAN I/O, a EX470 module must be inserted in the CPU.

Fig. 4.5: Inserting a CAN slave

Fig. 4.6: CAN I/O slave module selection dialog box

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.8Training ASPROG

In order for the CAN I/O master to access nodes, the node number on the module
has to correspond to the node number in the configuration.

Fig. 4.7: CAN node number dialog box

Fig. 4.8: Defining DI variables on a CAN slave

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.9Training ASPROG

Fig. 4.9: Defining DO variables

Fig. 4.10: Task with CAN I/O variables

Set the “scope” in the pop-up menu so that the relationship between variable and
hardware is immediately clear.

Working with CAN I/O (continued)

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.10Training ASPROG

Working with CAN I/O (continued)

If the task is compiled and transferred to the controller, the additional drivers are
also automatically copied in the “System” area.

Fig. 4.11: System area with “canio” master

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.11Training ASPROG

Example

� Read an analog input from the CAN I/O and output it somewhere else.

� Watch the LEDs to see when the analog values do not change

� Watch the LEDs to see when the analog values change

� Remove the CAN cable and watch the output

Project Name: can_2003
LAD Name: av_can

Resource: C#3

Schulung / Training

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.12Training ASPROG

4 B&R AUTOMATION TARGET 2005

4.1 Main Unit

� The system performance is is exceptionaly high because of cooperation
between the processors on the CPU and parallel processor capability.

� The parallel processors extend the performance palette of this system in
various directions, e.g.: very fast I/O in the µs range, interface expansions as
well as positioning and CNC applications.

� Expansions are possible using local expansions, remote slaves for longer
distances up to 4800m or network and field bus system connections, e.g.:
CAN.

4.1.1 Backplane

A backplane can have a maximum of 15 slots.
Slots that are not used should be covered by dummy modules.

4.1.2 Power Supply

Supply voltages in the DC range from 18-30V and in the
AC range from 82-264V, 47-63Hz. The power supplies are protected on the
primary side by a fuse and on the secondary side by an internal current limiter.
The power supply is always on the outer left of the backplane module.

4.1.3 CPU, User Memory and Parallel Processors

The high performance is reached using a processor with integrated RISC. All PCC
systems distinguish themselves by their real-time capable, multitasking operating
system. SRAM and FPROM are available as application memory. The user is
provided a modular IF concept. The interfaces can be switched using software and
be operated as either online or data interrface.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.13Training ASPROG

4.1.4 Configuration Possibilities

Parallel processors are special features of the B&R2005 system which can be used
as a CPU if no CPU is inserted.

4.1.5 I/O Modules and Terminals

The B&R2005 system offers an extensive palette of:

Digital Modules Relay or transistor version

Analog Modules 0-20mA and ±10V ... Resolution:12Bit

PT100 / FeCuNi / NiCrNi ... Resolution: 1/
10

 or 1/
100

°C

 1/
10

F

Interface, Counter and Network Modules

Positioning and CNC Modules

Fig. 4.13: Rack with CPU and parallel processors

Fig. 4.12: Rack with XP152

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.14Training ASPROG

4.2 Expansion

The B&R2005 can use both local and remote expansion.

4.2.1 Expansion

The expansion system is used for local expansions. The expansion master is an
EX350 in the power supply. The expansion slave is a power supply. With local
expansions, there can be a maximum of 2m between the individual stations and up
to 4 B&R2005 expansions, max. 52 IO modules can be used. The expansion cable
is used as transfer media.

4.2.2 RIO

The remote I/O system consists of a remote I/O master, the system module EX150,
and a remote I/O slave, as power supply. Remote networks can have max. 32
stations in a segment and can be used for distances up to 1200m. The transfer rate
that can be obtained is 2 MBaud. Using 3 repeaters, a max. of 121 stations can be
connected at a distance of 4800m.

RS485 twisted pair is used as transfer media.

4.2.3 CAN I/O

The CAN I/O system consists of at least one master, as CPU or parallel processor
with CAN interface, and up to 63 CAN slaves, as B&R2003 with CAN bus slave
module. The maximum expansion can have 63 stations. Several masters can be
used. Distances up to a max of 1000m can be reached. The max. transfer rate is
500kBaud. A 3 conductor CAN cable is used as transfer media.

4.2.4 Networks

The networks supported include the following networks:

� ETHERNET

� PROFIBUS

� B&R NET2000

� CAN

� Frame Driver

� Connections to systems from other manufacturers

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.15Training ASPROG

4.3 RIO Projects

In order to work with B&R RIO, a 3EX150 RIO master must be installed on the
rack. A RIO slave can be connected there.

Fig. 4.15: RIO I/O slave module selection dialog box

The settings used for the configuration of the RIO stations can be found in the
shortcut menu item RIO Properties.

Fig. 4.14: Inserting a RIO slave

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.16Training ASPROG

Working with B&R RIO (continued)

In order for the RIO master to access the slave nodes, the node number on the
module has to correspond to the node number in the configuration.

Fig. 4.16: RIO node number dialog box

Fig. 4.17: Selecting the power supply for the RIO slave module

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.17Training ASPROG

Working with B&R RIO (continued)

Assigning variable names for inputs and outputs.

Fig. 4.18: Assigning I/O variables

Fig. 4.19: Task with B&R RIO variables

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.18Training ASPROG

Working with B&R RIO (continued)

If the task is now compiled and transferred to the controller, the additional drivers
are also automatically copied in the “System” area and also transferred to the target.

Fig. 4.20: System area with “rio_lib” (Remote I/O Library)

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.19Training ASPROG

Example

� An output is activated when a positive edge occurs on an input.

� The output is deactivated again when a negative edge occurs on a second
input.

� Break the connection to the slave by unplugging the cable. What happens to
the slave? What happens to the master?

Project Name: rio_2005
LAD name: rio_pump

Resource: C#2

Schulung / Training

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.20Training ASPROG

5 B&R AUTOMATION TARGET 2010

5.1 Main Unit

� The high end system of the B&R2000 series.

� The system performance is a result of cooperation between several
processors and the CPU,

� I/O Processor to read from / write to IO simultaneously

� RISC to service interfaces simultaneously

� DPR Controller to mask / negate digital I/O points

the modular application memory which can be sent in for a project update if
a modem service is not available and parallel processor capability.

� Up to 99 modules can be installed on the I/O bus. Each module shows a
separate module number on the status display. The terminal blocks are
monitored and directly coded to the module which prevents mix-ups when a
large number of I/O modules are used.

� The parallel processors extend the performance palette of the system in
various directions:

� IPs, as intelligent peripherals: drum sequencers,
injection molding applications

� PPs, as parallel processors: Multiprocessor,
interface expansions, etc.

� The supply principle allows a system with redundant power supplies to be
created.

� Expansions are possible using local expansions, remote slaves for longer
distances up to 4800m or network and field bus system connections.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.21Training ASPROG

5.1.1 Backplane

The system has a modular system and I/O bus.
An I/O bus segment can be up to 20 slots long.
The system bus and the I/O bus both require a terminating resistor.
Slots that are not used should be covered by dummy modules.

5.1.2 Power Supply

Supply voltages in the DC range from 18-30V and in the
AC range from 82-264V, 47-63Hz.
The power supplies are protected on the primary side by a fuse and on the secondary
side by an internal current limiter.
The power supplies are then connected to the I/O bus.
Supply redundancy can be obtained by using twice as many power suplies as
needed.

The 24V secondary voltage can be switched forward to a terminal using the toggle
switch on the AC power supply, PS740.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.22Training ASPROG

5.1.3 CPU, User Memory and Parallel Processors

The high performance is reached using several processors (main processor, RISC,
I/O processor and DPR controller). All PCC systems distinguish themselves by their
real-time capable, multitasking operating system . The application memory
(SRAM and FPROM) is modular and can therefore also be sent in if a modem
service is not available.

The CPU is available in different versions. The only differences between the CP100
and the CP104 are the interfaces. Depending on the CPU, an RS232, a modem
capable RS232 and RS422/485 interface or an RS232, a modem capable RS232 and
CAN interface are available. The CP200 has a much higher calculation
performance,4 to 8 times, and more interfaces, an RS232, a modem capable RS232,
a CAN and RS422/485 interface.

The interfaces can be switched using software and operated as either
online or data interface.

5.1.4 I/O Modules and Terminals

The B&R2010 system offers an extensive palette of:

Digital Modules Relay or transistor version

Analog Modules 0-20mA and ±10V ... Resolution: 12Bit
PT100 / FeCuNi / NiCrNi ... Resolution: 1/

10
 or 1/

100
°C

Interface counter modules and network modules
Multifunction module, drum sequencer,
Positioning module, parallel processors, interfaces

Fig. 4.21: B&R2010 rack with system and I/O bus

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.23Training ASPROG

5.2 Expansion

5.2.1 Expansion

The B&R2010 can use both local and remote expansion.

The expansion system is used for local expansions.
The expansion master is an I/O module, EX302.

The expansion slave, EX301, is the first module in the expansion station and
must be inserted on a terminated backplane, BP202.
Local expansions can have a max. of 20 modules and there can be a max. of 2m
between the individual stations.

Up to 9 B&R2010 expansions with a max. of 99 modules can be used.
The expansion cable is used as transfer media.

RUN

NW 100

#

ERROR

RUN

CONNECT

COMM

BUS B

Tx

Rx

NODE #

BAUD

0

0 1
4567

89 2 3

01

4567
89 2

3

0 1

4567
89 2

3

4

68AC

E

2

88

Expansion Slave

Expansion Slave Expansion Master

Expansion Master

Expansion Master

PS

PS
CPU

I/O Modules

Max. 2 Meters

Max. 2 Meters

I/O ModulesI/O ModulesPS

0

4

68A
CE

2

01 ERROR

BAT1

RUN

FORCED

BAT2

MODE

CP100

SELECT

READY 302EX

03 04 08 09
EX 301

TRANSFER

0

46
8A

C

E 2

#
10

302EX

12 13 23 25

EX 301

TRANSFER

0

4

68AC

E

2

#

30
302EX

32 33 55 57

Up to 9 expansion stations

2010

EXPANSION

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.24Training ASPROG

5.2.2 RIO

Two different remote systems can be used, Remote I/O and CAN I/O.

The remote I/O system consists of a remote I/O master, the system module EX100,
and a remote I/O slave, EX200.
The remote I/O slave is the first module on the remote station and must be installed
on a terminated backplane, BP202.
Remote networks can have max. 32 stations in a segment and can be used for
distances up to 1200m. The transfer rate that can be obtained is 2 MBaud.

A max. of 121 stations can be connected at distances up to 4800m using a max. of 3
repeaters.

RS485 twisted pair cabling is used as transfer media.

CPU

Remote Master

Max. 32 stations in segment (RS485)
(incl. RIO Master and Repeater)

-> 30 RIO Slaves

1200m in
RS485 Segment

1200m in
RS485 Segment

1200m in
RS485 Segment

1200m in
RS485 Segment

Max. 32 stations in segment (RS485)
(incl. Repeater at start and Repeater at end)

-> 30 RIO Slaves

Max. 32 stations in segment (RS485)
(incl. Repeater at start and Repeater at end)

-> 30 RIO Slaves

Max. 32 stations in segment (RS485)
(incl. Repeater at start)

-> 31 RIO Slaves

128 Rs485 stations:

1 RIO Master

3 Repeaters (2 stations each)

121 RIO Slaves

4800m

Rs485 Network

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.25Training ASPROG

5.2.3 CAN I/O

The CAN I/O system consists of at least one master. A CPU or parallel processor
with CAN interface, and up to 63 CAN slaves, as B&R2003 with CAN bus slave
module. The maximum expansion can have 64 stations. Distances up to a max of
1000m can be reached. The max. transfer rate is 500kBaud.

A 3 conductor CAN cable is used as transfer media.

5.2.4 Networks

The following networks are also supported for data transfer:

� ETHERNET

� PROFIBUS

� CAN

� B&R NET2000

� Frame Driver

� Connections to systems from other manufacturers

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.26Training ASPROG

6 B&R AUTOMATION TARGET LOGIC SCANNER

6.1 Main Unit

� Combination of control and visualization tasks compact in a single device.

� IPC5xxx handles visualization tasks.

� LS251 handles control tasks and is completely independent of the IPC5xxx
operating system.

� High speed data exchange between LS251 and IPC5xxx via the PCI bus.

� Expansion possibilities exist for IO using RIO or CAN to connect to a
network.

6.1.1 PCI Bus

The PCI bus is connecting element between the LS251 and IPC5xxx. It is used as a
high speed data exchange media.

6.1.2 Power Supply

The LS251 uses either the IPC5xxx power supply directly or an external supply
(independent of the IPC5xxx supply) provided by the LS079 expansion card.

6.1.3 CPU, Application Memory

The high performance is reached using a processor with integrated RISC. All PCC
systems distinguish themselves by their real-time capable, multitasking operating
system . SRAM and FPROM are available as application memory. The user is
provided a modular IF concept, with the LS071. The interfaces can be switched
using software and operated as either online or data interface.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.27Training ASPROG

MASTER:
IPC with LS251 (Slot PLC)

2003

N#

EX470

STATUS

DC OK

CAN CAN / ID

Supply: + 24 VDC

+ +
_ _

0

2

46

8

AC

E

0

2

46

8

AC

E

INPUT

OUTPUT

+/- 24 VDC

+/- 8 mA

24 VDC0,5 A

OK

DM435

2 3 4 5 6 871

S#

N#

1 2 3 4 5 6 7 8

INPUT

OUTPUT

24 VDC

24 VDC

1 A 100%2 A 50%

6 mA

OK

DO435

N#

S#

ANALOG
INTERFACE

AF101

N#

S#

21
3

4

N#
S#

1 2

ANALOG
OUTPUT

AO352

U: +10V-I: 0...20mA

N#
S#

1

ANALOG

INPUT

U. +10V. Pot.

I: O ... 20mA

_

AI351

Power Supply with
CAN or RIO Nodes

I/O Modules

2003

N#

EX470

STATUS

DC OK

CAN CAN / ID

Supply: + 24 VDC

+ +
_ _

0

2

46

8

AC

E

0

2

46

8

AC

E

INPUT

OUTPUT

+/- 24 VDC

+/- 8 mA

24 VDC0,5 A

OK

DM435

2 3 4 5 6 871

S#

N#

1 2 3 4 5 6 7 8

INPUT

OUTPUT

24 VDC

24 VDC

1 A 100%2 A 50%

6 mA

OK

DO435

N#

S#

ANALOG
INTERFACE

AF101

N#

S#

21
3

4

N#
S#

1 2

ANALOG
OUTPUT

AO352

U: +10V-I: 0...20mA

N#
S#

1

ANALOG

INPUT

U. +10V. Pot.

I: O ... 20mA

_

AI351

Power Supply with
CAN or RIO Nodes

I/O Modules

B R& IPC 5000

Slave Slave

RIO or CAN

6.2 Expansion

The LS251 can be connected to I/O using RIO or CAN

6.2.1 RIO

The LS251 has a RIO interface onboard for a connection to IO modules from the
B&R 2003/2005/2010 families.

6.2.2 CAN IO

The LS251 has a CAN interface onboard for a connection to IO modules from the
B&R 2003 family.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.28Training ASPROG

7 B&R AUTOMATION TARGET IPC2XXX

7.1 Main Unit

� Increased processor performance with support of an FPU

� Large supply of memory with possibility for file management

� Compact design with flexible network connections

7.1.1 Power Supply

Integrated DC power supply with a supply voltage of 24V.

7.1.2 CPU, Application Memory

The IPC2xxx, having an Intel 486/DX5 with FPU and memory in the megabyte
range, provides high performance. The user now also has PC resources, such as
floppy disk and hard disk with a file management system for effective development
of applications. The interfaces can be switched using software and operated as
either online or data interface.

7.1.3 AutomationRuntime

To use the IPC2xxx as AutomationTarget, AutomationRuntime AR102 is installed
as real-time operating system from a set of diskettes. These installation diskettes are
created by the AutomationSoftware install kit.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.29Training ASPROG

7.2 Expansion

7.2.1 ISA I/O

With the LS301.4 card, 16 DI, 16 DO, 4AI, 2AO can be connected directly to the
IPC2xxx via the ISA bus.

7.2.2 CAN IO

With the LS172.4 card, B&R CAN IO can be connected to the IPC2xxx via the ISA
bus. The LS172.4 has two CAN interfaces.

7.2.3 Networks

� CAN

� Ethernet

� Serial

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.30Training ASPROG

8 B&R AUTOMATION TARGET IPC5XXX

8.1 Main Unit

� Increased processor performance with support of an FPU.

� Large supply of memory with possibility for file management.

� Compact and modular design with flexible network connections.

8.1.1 Power Supply

Integrated AC or DC power supply. 24V DC supply voltage and 100-240V AC
supply voltage, 47-63Hz.

8.1.2 CPU, Application Memory

The IPC5xxx, having a Pentium processor with FPU and memory in the megabyte
range, provides the highest performance. The user now also has PC resources, such
as floppy disk and hard disk with a file management system for effective
development of applications. The interfaces can be switched using software and
operated as either online or data interface.

8.1.3 AutomationRuntime

The following AutomationRuntimes are available for use with IPC5xxx as
AutomationTarget:

� AR105 - embedded. The AT only executes control tasks.

� AR010 - NT. The AT executes high priority and deterministic control tasks.
NT is handled in the idle time which makes it possible to run the
visualization on the same target.

AutomationRuntime is installed as real-time operating system from a set of
diskettes. These installation diskettes are created automatically by the
AutomationSoftware install kit.

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.31Training ASPROG

8.2 Expansion

8.2.1 ISA I/O

With the LS301.4 card, 16 DI, 16 DO, 4AI, 2AO can be connected directly to the
IPC5xxx via the ISA bus.

8.2.2 Expansion

With the LS191 card, B&R 2005/2010 IO can be connected to the IPC5xxx as local
expansion via the PCI bus.

MASTER:
Automation Runtime

2003

N#

EX470

STATUS

DC OK

CAN CAN / ID

Supply: + 24 VDC

+ +
_ _

0 2

4

68A

C

E 0 2

4

68A

C

E

INPUT

OUTPUT

+/- 24 VDC

+/- 8 mA

24 VDC

0,5 A

OK

DM435

2 3 4 5 6 871

S#

N#

1 2 3 4 5 6 7 8

INPUT

OUTPUT

24 VDC

24 VDC

1 A 100%

2 A 50%

6 mA

OK

DO435

N#

S#

ANALOG
INTERFACE

AF101

N#

S#

21 3 4

N#

S#

1 2

ANALOG
OUTPUT

AO352

U: +10V-

I: 0...20mA

N#

S#

1

ANALOG
INPUT

U. +10V. Pot.

I: O ... 20mA

_

AI351

Power Supply with
CAN I/O Nodes

I/O Modules

B R& IPC 5000

EXPANSION Slave CAN Slave

PS with Expansion Slave

I/O Modules

2005

8.2.3 CAN IO

With the LS172.4 card, B&R CAN IO can be connected to the IPC5xxx via the ISA
bus. The same possibilities are offered by the LS172.6 using a faster PCI bus
connection.

8.2.4 Networks

� CAN

� Ethernet

� Serial

4. B&R Automation TargetsB&R Automation StudioTM

Page 4.32Training ASPROG

9 B&R2000 OVERVIEW

N
e

tw
o

rk

C
A

N

E
X

P
A

N
S
IO

N

REMOTE

Remote Slave Expansion Slave Expansion Master

Up to 31 remote slave stations

with repeater 121

Remote Master Network Expansion Master

CPU+CAN

Max. 2 Meters

Max. 2 Meters

NW 100

#

NODE #

BAUD

0

01

4
56

78

9 2
3

01

4
56

78

9 2
3

0 1

4
56

78

9 2
3

46
8A

C E

2

88
EX 100

#

0

46
8A

C

E 2

01

MODE

CP100

SELECT

EX 200

ERROR

RUN

BUS B

Tx
Rx

NODE #

01

4567
89 2

3

0 1

4567
8 9 2

3

I/O ERROR

302EX

03 04 12
700DO

13

EX 301

TRANSFER

0

46
8A

C

E 2

#

20
302EX

2010

EXPANSION

Power Supply with
Remote I/O Slave

I/O BUS

5

98
7

6

0

4

3
2

1

5

9

87

6

0

4

3
21

2005

RIO Slave Module

20032003

N#

EX470

STATUS

DC OK

CAN CAN / ID

Supply: + 24 VDC

+ +
_ _

0 2

4

6

8

A

C

E 0 2

4

6

8

A

C

E

INPUT

OUTPUT

+/- 24 VDC

+/- 8 mA

24 VDC

0,5 A

OK

DM435

2 3 4 5 6 871

S#

N#

1 2 3 4 5 6 7 8

INPUT

OUTPUT

24 VDC

24 VDC

1 A 100%

2 A 50%

6 mA

OK

DO435

N#

S#

ANALOG

INTERFACE

AF101

N#

S#

21 3 4

N#

S#

1 2

ANALOG
OUTPUT

AO352

U: +10V

-I: 0...20mA

N#

S#

1

ANALOG
INPUT

U. +10V. Pot.

I: O ... 20mA

_

AI351

CAN

CAN-Bus Slavemodul

2003

N#

EX470

STATUS

DC OK

CAN CAN / ID

Supply: + 24 VDC

+ + _ _

0

2

4

68A

C

E

0

2

4

68A

C

E

INPUT

OUTPUT

+/- 24 VDC+/- 8 mA

24 VDC

0,5 A

OK

DM435

2
3 4 5 6 871

S#

N#

1 2 3 4 5 6 7 8

INPUT

OUTPUT

24 VDC

24 VDC

1 A 100%

2 A 50%

6 mA

OK

DO435

N#

S#

ANALOG
INTERFACE

AF101

N#

S#

21 3 4

N#

S#

1 2

ANALOG
OUTPUT

AO352

U: +10V-

I: 0...20mA

N#

S#

1

ANALOG

INPUT

U. +10V. Pot.I: O ... 20mA_

AI351

bis zu 63 Server Stationen

Power Supply with
Expansion Slave

Up to 4 expansion stations

2005

P R O V I T 5 5 0 0

Esc

.

1 2

0

3

4 5 6

7 8 9

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

IPC + AR

Schulung / Training

5. B&R Automation NetB&R Automation StudioTM

Page 5.1Training ASPROG

B&R AUTOMATION NET

1 OVERVIEW... 2

2 B&R AUTOMATION NET .. 3

3 COMMUNICATION PRINCIPLES ... 4

4 ACCESS TO B&R AUTOMATION NET 5

4.1 B&R Automation Net - PVI ... 5

4.2 B&R Automation Net - Routing .. 6

4.3 B&R Automation Net - INA Client FBKs 9

Schulung / Training

5. B&R Automation NetB&R Automation StudioTM

Page 5.2Training ASPROG

1 OVERVIEW

B&R Automation Net
Overview of the communication model for B&R Automation Net and ist
components.

Communication Principles

Access to B&R Automation Net
The user can access Automation Net for visualization and for the programming
device via PVI. From the application, access takes place using INA Client FBKs.
Routing possibilities are offered which allow new solution methods for simple
handling of network tasks.

5. B&R Automation NetB&R Automation StudioTM

Page 5.3Training ASPROG

2 B&R AUTOMATION NET

B&R Automation Net (AN) allows
communication between B&R Automation
Runtime, B&R Automation Target and also
other stations on the network. In general, B&R
AN represents a cloud of communication
between B&R and other components.

5. B&R Automation NetB&R Automation StudioTM

Page 5.4Training ASPROG

3 COMMUNICATION PRINCIPLES

AN
etAutomation N

NETWORKS

ETHERNET

PROFIBUS

RS232/485

FUTURE

CAN

RO
UTIN

G

VISUALIZATION

A
u
to

m
a

tio
n

So
ftw

a
re

B&R Automation Net makes it possible for every communication station to
exchange and edit all types of program objects and/or process variable objects.

B&R Automation Net is:

� independent of the operating system used
B&R Automation Runtime,Windows 95/98/NT/2000, etc.

� independent of the media used
RS232,CAN,Ethernet,Profibus,Modem,Memory,etc.

� independent of the transfer protocol used
INA2000, NET2000, Mininet, etc.

5. B&R Automation NetB&R Automation StudioTM

Page 5.5Training ASPROG

4 ACCESS TO B&R AUTOMATION NET

Communication within AN can be transparent, but different interfaces must be used
at the end points where the information is actually processed on the respective
operating system.

Therefore, the corresponding access method is required for each operating system.

4.1 B&R Automation Net - PVI

The Process Visualization Interface (PVI) is a component of AN and establishes the
connection to the B&R Industrial PC’s environment as common interface for all
Windows based programs.

Delphi

DDE

Server

PVI

Web

Server

OPC

Server

MS Excel

MS Word

VB

B&R

Automation

Studio TM

VC++
DIAL UP/

Intranet

OPC

Client

PVI
Automation Net

5. B&R Automation NetB&R Automation StudioTM

Page 5.6Training ASPROG

4.2 B&R Automation Net - Routing

Routing generally refers to a connection between several PCCs for programming. Its
main task is forwarding data addressed on another PCC.

CAN

RS232

IPC 1

PCC 4

Ethernet UDP

PCC 1

PCC 2 PCC 3

Profibus

The interface settings are made in AS using menu item
Extras: Options

Fig. 5.1: Connection settings

5. B&R Automation NetB&R Automation StudioTM

Page 5.7Training ASPROG

4.2.1 Online Configuration

Select the online configuration for communication to the local PCC. Automation
Studio provides the following preprogrammed configurations:

� Serial = RS232

� CAN

� SHARED = LS251

Additionally, the user can save other, specific configurations under different names.

4.2.2 Interface

Here, parameters for the selected online interface can be defined in a dialog box.
The parameters can also be entered as text using “Extra Settings”.

4.2.3 Connection Parameters

Additional settings for the device parameters when using CAN, Profibus and TCP/
IP Ethernet.

e.g. node number for CAN or TCP/IP Ethernet

4.2.4 Target System Path

Settings for routing between controllers
e.g.: “/CN=CAN.3”

This setting means that a CAN connection will be created from the local controller
to the next controller. The ending “.3“ is the set node number of the next station.

4.2.4 Activate Remote Connection

The user can make settings for a remote connection between PCs via TCP/IP.

Note
More than one routing path can be entered !!

5. B&R Automation NetB&R Automation StudioTM

Page 5.8Training ASPROG

Example
Create the network shown belong with the help of your trainer and establish
communication between the controllers and Automation Studio.

PCC_2

AS

PCC_1

RS232

CAN

� Create the network

� Program a tasks with a toggle output

� Transfer and test the program

Project Name: rout_can
Task Name: toggle

Resource: ?

Schulung / Training

5. B&R Automation NetB&R Automation StudioTM

Page 5.9Training ASPROG

4.3 B&R Automation Net - INA Client FBKs

Today, many automation solutions use distributed intelligence. Tasks are distributed
over several automation targets. The connection between the automation targets is
made using Automation Net.

The communication services, such as reading or writing PVs, are already provided
to the programmer by Automation Runtime. This communication provided by Auto-
mation Runtime is called the INA Server.

Access of the communication services by the application takes place using function
blocks, INA Client FBKs.

With INA Client FBKs, PVs can now be read from or written to by another
automation target using their names via Automation Net. This makes exchanging
data between B&R controllers much easier and more transparent for the user.

Advantages of the INA Services:

� Connections are made by setting parameters and no longer need to be
programmed

� Complete performance of the INA2000 protocol

� Change the physics simply by changing the parameters

� Fast and simple use of network technologies without having to make extensi-
ve changes to source code

6. Project Guidelines IB&R Automation StudioTM

Page 6.1Training ASPROG

PROJECT GUIDELINES I

1 OVERVIEW... 2

2 PROJECT CREATION ... 3

3 PROGRAMMING CONVENTIONS... 4

3.1 Identifier ... 4

3.2 Data Types .. 4

3.3 Directory Structure ... 4

3.4 Software Module Names .. 5

3.5 Task Names .. 5

3.6 Data Module Names ... 6

3.7 Variable Names .. 7

3.8 Constant Names ... 10

3.9 Alias Process Variables for Function Blocks11

3.10 Assigning Revision Numbers ..11

Schulung / Training

6. Project Guidelines IB&R Automation StudioTM

Page 6.2Training ASPROG

1 OVERVIEW

For larger projects, it is important that uniform guidelines are followed during
development and programming.

This should make it easier for several programmers to work together on a project.

This should also make programs more clear for the programmer and for others. The
ability to expand and maintain the programs is improved considerably.

Project Creation
Short overview of the process of creating projects. This information also depends on
the branch and the respective projects, but can be used as a basis and adapted for the
project being created.

If guidelines already exist for projects, they should be followed !

Programming Conventions
This concerns assigning names to tasks and also variables. Variable names and
constant names are designed for 32 characters. These characters should be used in
as meaningful a manner as possible. Task names are limited to 8 characters. The
nesting depth for structures is limited to 16.

Notes on Literature
This chapter is a exert from the B&R application programming guidelines which is
described in detail in the appendix.

Further Literature:

Code Complete : A Practical Handbook of Software Construction
by Steve C McConnell

Paperback - 857 Pages (May 1993)

Microsoft Press;
ISBN: 1556154844

6. Project Guidelines IB&R Automation StudioTM

Page 6.3Training ASPROG

2 PROJECT CREATION

Details concerning the individual points can be found in Project Guidelines II

� Internal preliminary discussions

� Creating a project

� Project discussions

� Software conception phase
Defining or adjusting the programming conventions

� Coding

� Testing

� Startup

� Documentation

� Archiving

Note
In this chapter, only the software conception phase will be looked at in detail.

6. Project Guidelines IB&R Automation StudioTM

Page 6.4Training ASPROG

3 PROGRAMMING CONVENTIONS

3.1 Identifier

AS is a programming tool that makes it possible to assign meaningful variable
names.

� Variable name 32 characters

� Constant name 32 characters

� Task names 8 characters

� File names W95/W98/WNT naming conventions

� Nesting depth for structures 16 levels

Programming conventions for B&R AutomationStudio are described in the
following sections.

They should be followed when creating software, during startup and also for later
software changes.

3.2 Data Types

In all programming languages supported by AutomationStudio, the
IEC Data Types should be used. Also ANSI C !!!

This simplifies changing to other architectures considerably because only the
platform specific sections have to be rewritten.

3.3 Directory Structure

As standard, AutomationStudio saves all source files in the CPU path for the
project.

With the programming language ANSI C, it is possible to create subdirectories for
source and include files which makes them much clearer.

../Cpu/SRC

../Cpu/INC

6. Project Guidelines IB&R Automation StudioTM

Page 6.5Training ASPROG

3.4 Software Module Names

3.4.1 General Information

During the software conception phase, the application is divided into smaller and
smaller units which provide the required functionality.

This type of software module should be a closed unit. It handles a certain task and
has a precisely defined interface to other software modules.

A software module can consist of one or more tasks and data modules.

The module concept should also be used for function blocks and functions.

3.4.2 Guidelines for Module Names

A module is defined using a combination of three characters.
This character combination can consist of letters and/or numbers.

The character combination is found in all elements that belong to this module such
as tasks, data modules, global variables, function block names and function names.

3.5 Task Names

It should be clear that a tasks belongs to a software module from its name. Task
names are presently limited to 8 characters and are defined as follows:

Tab. 6.1: mm_ttttt

To improve clarity, module and task identification codes should be separated by an
underline.

Example: mi_drv ... machine interface, driver

Abbreviation: Description

mm_ Code for the module

ttttt Code for the task in the module

6. Project Guidelines IB&R Automation StudioTM

Page 6.6Training ASPROG

3.6 Data Module Names

It should be clear that a data module belongs to a software module from its name.

In certain cases, it can be necessary to enter the memory type for the data module in
the name. For example: Backup copy in Flashprom, if the data module is written to
by the application.

Data module names are presently limited to 8 characters and are defined as follows:

Tab. 6.2: mm_stttt

Tab. 6.3: Memory type

Example
mi_para
Data module in the MI module with the name Para, the memory type is not entered.

mi_xpara
Data module in the MI module with the name Para, which is in FIX RAM.

Abbreviation: Description

mm_ Code for the module

s Memory type

tttt Code for the data module

Prefix s Description

_ No entry

p Eprom/Flashprom

x Fix Ram

r Ram

6. Project Guidelines IB&R Automation StudioTM

Page 6.7Training ASPROG

3.7 Variable Names

AutomationStudio differentiates between variables with the following scope:

� global variables

� local variables

� C variables (see chapter ANSI C)

Variable names can have up to 32 significant characters.

Variable should always be defined with the smallest possible scope. When using
PCC global variables, very complex structures can easily be created which makes
the application logic difficult to understand. Additionally, PCC global variables
make it considerably more difficult to reuse and maintain codes.

As the size of the project increases, it becomes more important to be able to quickly
recognize the scope of variables. This can be made easier by using a type prefix
with variable names.

3.7.1 Global Variables

Applications for global variables:

� Communication between Tasks

� IO Connection to Hardware

Global variables are to be defined with “_GLOBAL” in ANSI C.

6. Project Guidelines IB&R Automation StudioTM

Page 6.8Training ASPROG

pttMMMnnnnnnnnn...

The separation of the sections can be shown using underlines or capitalization.

Abbreviation: Description

p Type prefix for
scope of the variable

tt Type of variable

MMM Code for the module
(only capitals and/or numbers)

nnnnnnnnn.. Variable name consists of letters, numbers and underline.
The name must begin with a lower case letter or an
underline.

Example
IO Inputs/Outputs:

gDiHTGStart, gDoHTGStop, gAiHTGzyTemp, gAoHTGzyClock, etc.

Tab. 6.4: Names of Global Variables

Type tt: Description

Di Digital input (BOOL)

Do Digital output (BOOL)

Ai Analog input (INT)

Ao Analog output (INT)

P_ Pointer (only meaningful in “C”)

 Tab. 6.6: Type description of variables

Type Prefix p Description

g PCC global variable

None C local variable and local variables in IEC languages

 Tab. 6.5: Description of the type prefix p

6. Project Guidelines IB&R Automation StudioTM

Page 6.9Training ASPROG

3.7.2 Access of Hardware IO

The access ofhardware data points can occur in each software module exactly
once.

An exception to this is LAD programming. Here, inputs can be accessed more
often. Outputs can only be written to once.

For all other programming languages, the following is valid:

� At the beginning of the module, the hardware IOs in the hardware data point
buffer are copied to the local module status structure.

� At the end of the module, the buffer is written to the outputs.

� A substructure HwIO in the local module status structure is used as buffer.

This also has the advantage that changing the hardware data points between
normally open to normally closed contacts only affects one location in the program.

IMPORTANT
Outputs are only allowed to be written to by a module one time!

3.7.3 Local Variables

� Names for local variables can contain all number and letter combinations.

� Exchanging local data and commands can take place using the
respective prefixes “C_” and “S_”.

� Local variables are to be defined with “_LOCAL” in ANSI C.
This variable type can be viewed with “Watch”.

Additionally, they have to begin with the prefix „1“ in ANSI C, the prefix is not
needed in all other IEC languages.

Example in IEC languages:

resAverage, intCounter, ...

6. Project Guidelines IB&R Automation StudioTM

Page 6.10Training ASPROG

3.7.4 Initializing Variables

Variables are principally only to be initialized in the “INIT SP” for the main task or
module.

The variable initialization in the variable declaration window is always to be set to
“remanent”.

3.8 Constant Names

� Constant names can have up to 32 significant characters.

� Self-defined constants are always written in capitals.

Constants defined by B&R standard software, e.g. NC software are exceptions.
They are not allowed to be changed during the creation of the application!

3.8.1 Constant Definition in ANSI C

In ANSI C, there are three possibilities to define constants.

� Constants that are valid throughout the system
These are always written in capitals and are not allowed to have underlines.

Example:TRUE, FALSE, UNDEF, ...

� Constants with software specific validity
Constants are principally always valid throughout the system, but the use of a
specific code allows them to be assigned to a program.

� Commands
Constants belonging to a spezial module are labeled with the module code
and an underline,

Example: MI_START, MI_STOP, C_START, C_STOP

6. Project Guidelines IB&R Automation StudioTM

Page 6.11Training ASPROG

3.8.2 Reserved Constants

These constants are writtenin capitals but are labeled mit ”nc” in lower case at the
beginning.

Example: ncON, ncOFF, ncINIT

These constants are not allowed to be changed by the user.

3.9 Alias Process Variables for Function Blocks

In alias names of function blocks, the function block name always has to be first.
The description is separated by an underline.

Example: TON_valve, TOF_motor

3.10 Assigning Revision Numbers

In all headers where version numbers are assigned, the following procedure should
be used:

The version number consists of 4 characters.

xx.yy:

yy .. increased by 1 with each change
xx .. increased by 1 for major changes. yy becomes 0.

Version numbers are assigned in hex format.

IMPORTANT
Detailed literature concerning this topic is available.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.1Training ASPROG

SEQUENTIAL FUNCTION CHART

1 OVERVIEW... 2

2 SFC SYNTAX ... 3

2.1 Steps ... 4

2.2 Actions ... 5

2.3 Transitions .. 6

2.4 Jumps.. 6

2.5 Branches ... 7

2.6 IEC Steps ... 9

3 PLANNING WITH SFC ..11

3.1 Planning on Paper ... 12

3.2 SFC Tools ... 13

3.3 SFC Application ... 14

Schulung / Training

7. Sequential Function ChartB&R Automation StudioTM

Page 7.2Training ASPROG

1 OVERVIEW

B&R offers the right programming language for every application and for every
programmers preference. This includes:

� Ladder Diagram (LAD)

� Instruction List (IL)

� Structured Text (ST)

� Sequential Function Chart (SFC)

� B&R Automation Basic (AB)

� ANSI C

LAD Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

IL Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

ST This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

SFC A sequential language that was developed to separate a task into clear units.
Sequential Function Chart (SFC) is well suited for processes where states
change in steps, for example: automatic carwash

AB This B&R high level language is a clear and powerful programming language for
automation systems of the newest generation. Simple standard constructs guarantee
fast and efficient programming. Previously PL2000

ANSI C This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast and
efficient application programming.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.3Training ASPROG

2 SFC SYNTAX

In this chapter, we will have a detailed look at the language Sequential Function
Chart (SFC).

SFC ist a graphically structured language which eases sequential control.

This IEC61131-3 language is based on GRAFCET, an important French
programming language.

The SFC programming symbols are divided into the following groups:

� Initialization step

� Steps – sequential states

� Actions – for IEC steps

� Defining characters for actions

� Branches

� Transitions
Transfer conditions between steps

7. Sequential Function ChartB&R Automation StudioTM

Page 7.4Training ASPROG

2.1 Steps

2.1.1 Init Step

Every SFC program contains a special step. The initialization step.
This INIT step is symbolized by a double rectangle. The sequence begins with this
step each time the controller is started.

2.1.2 Normal Steps

„Normal“ steps are symbolized by a rectangle. The rectangle contains the name of
the respective step.

A variable exist for each step with the name of the step. The status of the step can
be read from this variable.

For simplified steps, this variable has data type “BOOL”.
For IEC steps, this is a structure variable.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.5Training ASPROG

2.2 Actions

� Actions contain the actual program code

� Actions are always assigned to a step

They are several types of actions:
The languages IL, ST, LAD, AB and SFC can be selected.

2.2.1 Simple actions

The simple form of actions are called “Action”. The code contained in them is
always executed when the action is active. You can see that an action is assigned to
a step because a small triangle on the top right of the symbol appears.

2.2.2 Entry Action

The code for the entry action is executed once when the step becomes active. That
means whenever the step status changes from inactive to active. If a step contains an
entry action, a small square with the letter “E” is shown in the bottom left corner of
the step symbol.

2.2.3 Exit Action

The code is executed once when the action status changes from active to inactive.
The exit action has an “X” in the lower right corner.

Steps can contain both “entry actions”, and “exit actions” !

7. Sequential Function ChartB&R Automation StudioTM

Page 7.6Training ASPROG

2.3 Transitions

Transitions are symbolized by “ ” symbols at the connection point between the

steps. The transition conditions are on the right next to the symbol.

The transition conditions can be a simple BOOL variable or logically linked varia-
bles where the result must be TRUE or FALSE!

The space next to the transition is limited, therefore transitions canbe entered in a
separate editor. Only one link can be entered in this editor. Command sequences are
not allowed. If the transition is the result of a logical link, this is shown by a small
triangle.

Languages IL, ST, LAD and Automation Basic can be selected.

2.4 Jumps

Jumps are used to create loops and repeats. Jumps are represented by a jump
symbol. The name of the jump target is shown under the jump symbol.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.7Training ASPROG

2.5 Branches

2.5.1 Alternative Branch

Using alternative branches, it is possible to continue processing in one of several
branches depending on the transition condition. If several transition are TRUE, then
the left branch is processed. To make things clearer, transitions should be selected
so that only one is active at all times.

2.5.2 Parallel Branch

Using parallel branches, it is possible to process several branches in “parallel”. The
steps in the respective branches are naturally processed one after the other. The
order moves from left to right. The transition which where the branches come
together is evaluated when the last step is active in each branch.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.8Training ASPROG

Example
Use the editor to create a sequence with normal steps, transitions, alternative
branches and parallel branches to get used to the editor.

Add steps and transitions.

Delete steps and transitions, etc.

IMPORTANT
To select steps and transitions, you must work with the <SHIFT>+<Cursor> keys.

Project Name: sfc_pro1
Task Name: sfc_edit

Resource: C#2

Note
Variables are requested directly by the editor and should be defined as local.

Schulung / Training

7. Sequential Function ChartB&R Automation StudioTM

Page 7.9Training ASPROG

The actions are represented by “banners” which are connected to the horizontal line.

2.6 IEC Steps

2.6.1 IEC Actions

IEC actions can only be connected to IEC steps. They are recognizable by the hori-
zontal line on the right corner.

The “banner” is divided into 2 columns. The first column contains a letter that
specifies the execution rate. Some types of execution require a time entry which is
entered next to the letter. Constants, variables and literals of type “TIME” are valid
as time entries. The second column shows the name of the action being executed.

Several IEC actions can be connected to IEC steps. For example, an IEC action can
be continually activated in a step using execution type “S” and then deactivated in
another step with “R”.

“Entry actions” and “exit actions” are also possible in IEC steps.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.10Training ASPROG

2.6.2 Execution Types for IEC Actions

The folowing execution types are possible for IEC actions:

2.6.3 Executing IEC Actions

Each IEC action has a structure variable with the name of the action.
Element .x of the structure can be used to read the activation status of the action.

Evaluating this value <action name>.x can be done to determine, if an action is
active or inactive.

IEC actions are executed as long as they are active. After changing from active to
inactive, the actions executed one more time.

During the last execution of the action, the value of <action name>.x = FALSE.

Qualifier Description

N Not stored

Action is executed as long as the step is active

R Reset

Action is not executed.
Stored status of the action is deleted.

S Set

Action executed until reset with R.

L t#Time Limited

Action executed as long as step is active and the set time has not passed (according to IEC
format).

D t#Time Delayed

Action executed if the set time has passed (according to IEC format) and the step is still active.

P Pulse

Action executed once when the steps becomes active.

SD t#Time Stored and Delayed

Action becomes active after set time, independent of if the step is still active.

DS t#Time Delayed and Stored

Action becomes active if the step was active for at least the set time, status is stored after the step
has ended.

SL t#Time Stored and Limited

The action remains active for exactly the set time, independent of if the step remains active.

 Tab. 7.1: IEC actions

7. Sequential Function ChartB&R Automation StudioTM

Page 7.11Training ASPROG

3 PLANNING WITH SFC

Example
Application:

Procedure:

� Determine the necessary steps

� Determine the transition conditions, transitions

� Define further programming conventions if necessary, for variable names,
etc.

� Create SFC task

� Program steps

� Program transitions

� Test steps

� Define outputs

� Enter code in the steps and test the function

M

M

GDoValveColorgDoValveWater

gDoValveDrain

gDiSensLow

gDiWater_ok

gDiSens_full

gDoMixer

gDoPumpDraingDiStart

Press start...
Open water valve

Water OK reached...
Close water valve,
Switch on stirring mech.,
Open color valve

Sensor Full reached...
Close color/dispersion
valve, Wait 30 sec.
Open drain valve
Switch on drain pump

Sensor Low reached...
Switch off pump, switch
off stirring mech.
Close drain valve

Fig. 7.1: Chemical system section

Schulung / Training

7. Sequential Function ChartB&R Automation StudioTM

Page 7.12Training ASPROG

3.1 Planning on Paper

gDiStart

7. Sequential Function ChartB&R Automation StudioTM

Page 7.13Training ASPROG

3.2 SFC Tools

 Search
 <ctrl><f>

 Search forwards
 <F3>

 Search backwards.
 <shift><F3>

 Prev. step
 transition
 <ctrl><t>

 Next step
 transition
 <ctrl><e>

 Alternative branch
 right
 <ctrl><a>

 Alternative branch
 left

 Parallel branch
 right
 <ctrl><l>

 Parallel branch
 left

 Jump

 <ctrl><u>

 Transition with
 jump

 Use
 IEC steps

 Add
 action

 Delete
 action

 Select actions

 Edit
 action

 Link
 action

 Break/delete
 action/step/
 transition

 Start object

 Stop object

 Tab. 7.2: SFC Toolbar

Schulung / Training

7. Sequential Function ChartB&R Automation StudioTM

Page 7.14Training ASPROG

3.3 SFC Application

Mixer in SFC.

The steps should always be defined first.

Fig. 7.3: Steps with transitions

Fig. 7.2: Defining the steps in SFC

Then the transition conditions are defined.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.15Training ASPROG

Mixer in SFC (continued)

When the inputs have been defined, the SFC program can be tested in ist basic
form.

Fig. 7.4: Defining the hardware assignments

Fig. 7.5: Testing the steps and the transition conditions

7. Sequential Function ChartB&R Automation StudioTM

Page 7.16Training ASPROG

Mixer in SFC (continued)

Double-clicking on the step symbol opens a dialog box that can be used to define
the source type for the block.

Fig. 7.7: Code for step st_WAIT

Fig. 7.6: Defining the code type

The outputs are defined in the block according to the plan made previously.

7. Sequential Function ChartB&R Automation StudioTM

Page 7.17Training ASPROG

Mixer in SFC (continued)

Comments can be added to the individual steps. The local menu can be opened with
the right mouse button.

Fig. 7.8: Enter comments for step

Fig. 7.9: “Step Attribute” dialog box

7. Sequential Function ChartB&R Automation StudioTM

Page 7.18Training ASPROG

Mixer in SFC (continued)

Code for step “st_WATER”

Fig. 7.11: Defining an “exit action”

If an output is set in a step, it can be reset when exiting the step if required by the
application.

Fig. 7.10: Defining the outputs in the step

7. Sequential Function ChartB&R Automation StudioTM

Page 7.19Training ASPROG

Mixer in SFC (continued)

Source code for the exit action.

Fig. 7.12: Code for the exit action

Fig. 7.13: Indication of the exit action

7. Sequential Function ChartB&R Automation StudioTM

Page 7.20Training ASPROG

Mixer in SFC (continued)

If we check the settings for the example again, we will see that the sensor inputs are
wired as normally closed contacts. That means they must be inverted. For the
transitions, it is possible to create this type of simple connection directly. The result
of this type of connection must be TRUE or FALSE. Other connections are not
allowed.

Fig. 7.14: Defining a transition connection

Fig. 7.15: Code and indicator for a transition link

8. Automation BasicB&R Automation StudioTM

Page 8.1Training ASPROG

AUTOMATION BASIC

1 OVERVIEW... 2

2 SYNTAX .. 3

2.1 Command Groups .. 3

2.2 Operator Priorities .. 4

2.3 Logical Links .. 5

2.4 Arithmetic Operations .. 6

2.5 Data Type Conversion .. 6

2.6 Logical Comparison Expressions ... 7

2.7 Decisions .. 7

2.8 Case Statements ... 8

2.9 Loops ...11

2.10 Select Statements ... 13

2.11 Working with Function Blocks ... 16

Schulung / Training

8. Automation BasicB&R Automation StudioTM

Page 8.2Training ASPROG

1 OVERVIEW

B&R offers the right programming language for every application and for every
programmers preference. This includes:

� Ladder Diagram (LAD)

� Instruction List (IL)

� Structured Text (ST)

� Sequential Function Chart (SFC)

� B&R Automation Basic (AB)

� ANSI C

LAD Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

IL Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

ST This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

SFC A sequential language that was developed to separate a task into clear units. SFC is
well suited for processes where states change in steps, for example: automatic
carwash

AB This B&R high level language is a clear and powerful programming language
for automation systems of the newest generation. Simple standard constructs
guarantee fast and efficient programming. Previously PL2000

ANSI C This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast and
efficient application programming.

8. Automation BasicB&R Automation StudioTM

Page 8.3Training ASPROG

2 SYNTAX

2.1 Command Groups

� Logical Links

� Arithmetic Operations

� Logical Comparison Expressions

� Decisions

� Loops

� Select Statements

� Function Blocks

8. Automation BasicB&R Automation StudioTM

Page 8.4Training ASPROG

2.2 Operator Priorities

The use of several operators in a line brings up the question of priority.

Operation Symbol Priority

Brackets () highest

Function Evaluation

Qualifier
Argument List

Exponential EXP(IN1,IN2)

Negation
Complement

NOT

Multiplication
Division
Modulo

*
/

MOD

Addition
Subtraction

+
-

Comparison <, >, <=, >=

Equal
Unequal

=
<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR lowest

Tab. 8.1: Operator priorities

8. Automation BasicB&R Automation StudioTM

Page 8.5Training ASPROG

2.3 Logical Links

Symbol Logical Links Example

NOT Unary Negation a := NOT b;

AND Logical UND a := b AND c;

OR Logical OR a := b OR c;

XOR Exclusive OR a := b XOR c;

Motor_1 := (In_1 AND (NOT In_2 OR In_3)) OR In_4;

Tab. 8.2: Logical links

8. Automation BasicB&R Automation StudioTM

Page 8.6Training ASPROG

Data type BOOL SINT INT DINT USINT UINT UDINT REAL

BOOL x x x x x x x

SINT x INT DINT USINT UINT UDINT REAL

INT x INT DINT INT UINT UDINT REAL

DINT x DINT DINT DINT DINT UDINT REAL

USINT x USINT INT DINT UINT UDINT REAL

UINT x UINT UINT DINT UINT UDINT REAL

UDINT x UDINT UDINT UDINT UDINT UDINT REAL

REAL x REAL REAL REAL REAL REAL REAL

2.5 Data Type Conversion

2.5.1 Implicit Data Type Conversion

If different data types come together in operations, the compiler carries out an
implicit data type conversion.

2.4 Arithmetic Operations

A decisive factor when deciding to use a high level language is the simplicity when
handling arithmetic operations.

Automation Basic provides the basic arithmetic functions for your application such
as:

2.5.2 Explicit Data Type Conversion

Explicit data type conversion takes place using functions from the STANDARD
library.

e.g.: DINT(bool_var)

Tab. 8.4: Implicit data type conversion

Symbol Arithmetic Operations Example

:= Assignment a := b;

+ Addition a := b + c;

- Subtraction a := b - c;

* Multiplication a := b * c;

/ Division a := b / c;

mod Whole number division
remainder

a := b mod c;

Tab. 8.3: Arithmetic operators

8. Automation BasicB&R Automation StudioTM

Page 8.7Training ASPROG

2.6 Logical Comparison Expressions

High level languages such as Automation Basic allow branches to be easily create
using comparison operations.

Symbol Logical Link Expression Example

= Equal IF a = b THEN ...

<> Unequal IF a <> b THEN ...

> Greater than IF a > b THEN ...

>= Greater than or equal IF a >= b THEN ...

< Less than IF a < b THEN ...

<= Less than or equal IF a <= b THEN ...

2.7 Decisions

� First condition true:
Execute the THEN branch

� Second condition true:
Execute the ELSE IF THEN branch

� Conditions are false:
Execute the ELSE branch

The ELSE IF BRANCH and the ELSE branch of an IF statement are optional.

Decision Example Description

 a := b * c; Calculations

IF Introduction

THEN IF a > 0 THEN 1st Condition

 result := 1; Condition met

ELSE IF ELSE IF a = 0 THEN 2nd Condition

 value := 100;

ELSE ELSE Otherwise ...

 result := 0; No condition met

ENDIF ENDIF End of decision

Tab. 8.5: Logical comparison expressions

Tab. 8.6: IF statements / decisions

8. Automation BasicB&R Automation StudioTM

Page 8.8Training ASPROG

2.8 Case Statements

CASE statements all fast access of various actions depending on the value of a
variable. We will clarify the use of CASE statements using a display switch with a
selection dial that has several positions:

The expression, between CASE and OF must be a UINT data type
and can have a value between 0 and 65535 !

Only whole number values can be used as steps.

A colon must be placed after the step number.

Several numbers can follow the same statement block:

� Fields with progressive numbers e.g.: 6..10:
can only have 2 points between the numbers !

� Lines in a list of number lines must be directly below the previous line
e.g.: ACTION 2:

ACTION 5:

The ELSEACTION STATEMENT BLOCK PROCESSES ALL NUMBERS THAT
ARE NOT LISTED. ONLY ONE STEP PER CYCLE is executed.

Case Statement Example Description

CASE
OF
ACTION 1:

ACTION 2,5:

ACTION 6..10:

ACTION 11..20:

ELSEACTION

ENDCASE

CASE Position OF

 ACTION 1:
 Display := OVERVIEW;
 ENDACTION

 ACTION 2:
 ACTION 5:
 Display := NOT_SUPPORTED;
 ENDACTION

 ACTION 6..10:
 Display := SET_VALUE;
 ENDACTION

 ACTION 11..20:
 Display := ACT_VALUE;
 ENDACTION

 ELSEACTION:
 Display := ERROR;
 ENDACTION
ENDCASE

Introduction

Only for one position

Valid for position 2 or 5

Valid for positions 6 to 10

Valid for positions 11 to 20

All other positions

End of the CASE statement

 Tab. 8.7: Case statements

8. Automation BasicB&R Automation StudioTM

Page 8.9Training ASPROG

Example
The CASE statement is often used when making selections. In this example, we
want to use the CASE statement for simple elevator control.

The elevator control should be created for a building with 3 floors.
The following steps must be used:

� Definition of the constants for the ACTIONS

BASEMENT UINT 0
FIRST FLOOR UINT 1
SECOND FLOOR UINT 2

� Initialization of the floor positions

basement_pos = 0
firstfloor_pos = 500
secondfloor_pos = 1000

1

0

2

Motor

M Direction

1

0

secondfloor_pos = 1000

firstfloor_pos = 500

basement_pos = 0

BASEMENT

FIRST FLOOR

SECOND FLOOR

Schulung / Training

8. Automation BasicB&R Automation StudioTM

Page 8.10Training ASPROG

� Programming the cyclic program

The current set position is set to the selected floor in the individual steps.

e.g. set_pos = basement_pos

Monitoring and control of the positions is handled outside of the step. If the current
position is smaller than the set position, it must be increased until it is equal to the
set position. The direction of the movement and the motor must be considered.

if (act_pos > set_pos) then
 motor = 1 ; Switch motor on
 direction = 0 ; Downwards directions
 act_pos = act_pos - 1
else if (act_pos < set_pos) then

; the program should be completed here

If the set position is the same as the actual position, then the motor should be
switched off.

Project Name: proj_ab
Task Name: elevator

Resource: ?

Schulung / Training

8. Automation BasicB&R Automation StudioTM

Page 8.11Training ASPROG

2.9 Loops

Loops working together with a condition, allow one or more statements to be
executed repeatedly. In Automation Basic, all types of loops are created with a
single construct.

The statement block should be executed 5 times.
Key Words Program Description

LOOP
TO/DOWNTO
DO

ENDLOOP

LOOP i := 0 TO 4 DO

 res := value + i;

ENDLOOP

Introduction

Statement block

Loop End

The statement block is only executed when conditions are not met.

Key Words Program Description

LOOP

EXITIF

ENDLOOP

LOOP

 EXITIF res > 2000;
 res := value + i;

ENDLOOP

Introduction

Exit Condition
Statement block

Loop End

The statement block is executed at least once.

Key Words Program Description

LOOP

EXITIF

ENDLOOP

LOOP

 res := value + i;
 EXITIF res > 2000;

ENDLOOP

Introduction

Statement block
Exit Condition

Loop End

IMPORTANT
Make sure that endless loops are not created because they will cause a cycle time
violation.

Tab. 8.8: Loop variant 1

Tab. 8.9: Loop variant 2

Tab. 8.10: Loop variant 3

8. Automation BasicB&R Automation StudioTM

Page 8.12Training ASPROG

Example
In a house, the temperature is measured at 10 different locations. To improve
monitoring of the heating costs, the average value should always be calculated.

The solution should be created using a loop !!!

If a temperature is outside the limits,

TEMP_MAX = 80 ° C

TEMP_MIN = 10 ° C

then an error bit should be set.

Project Name: proj_ab
Task Name: temp_l

Resource: C#1

Schulung / Training

8. Automation BasicB&R Automation StudioTM

Page 8.13Training ASPROG

Select Statement Example Description

SELECT SELECT sStep Introduction (optional with step
number variable)

Variable := 1 Global statement

WHEN StopKey = 1 Global condition

 cmdMotor := 0

NEXT DELAY

STATE state DELAY State block qualifier

 cmdMotor := 0

WHEN WHEN UpKey = 1 Continue condition

NEXT NEXT UPWARDS Next step

WHEN DownKey = 1

NEXT DOWNWARDS

state UPWARDS

WHEN EndTop = 1

NEXT DELAY

 cmdMotor := 1

 CmdDirection := 1

state UPWARDS

WHEN EndBottom = 1

NEXT DELAY

 CmdMotor := 1

 CmdDirection := 0

ENDSELECT ENDSELECT End of loop

2.10 Select Statements

Select statements allow sequential control to be easily programmed and later
monitored.

We will clarify sequential control programming using the following electrically
operated punch machine.

Tab. 8.11: Select statement

8. Automation BasicB&R Automation StudioTM

Page 8.14Training ASPROG

� A select statement can consist of any number of states !

� One state is executed per task cycle !

� The first state in the select construct has number 0.

� For each next statement, there must be a corresponding state !

� If an exit condition is met, the folowing commands are no longer executed!

� Number code of the state (Data type: UINT, Scope: local)
The step number which is always visible and the best possible
monitoring which results from it. Writing to this PV can also influence the
process.

• Global statements and transfer conditions
They are executed in each cycle and can therefore be used for error
monitoring and to quickly react to special events and high priority queries.

� The structure of the Select construct must be used, i.e. a state cannot be
exited using an IF statement !

Example
WHEN LowEnd = 1

 motor = 0

 NEXT DELAY

� Nesting Select statements is possible!

� Outputs should only be written to once !

2.10.1 Syntax Descriptions

8. Automation BasicB&R Automation StudioTM

Page 8.15Training ASPROG

Example
Create a program in AB for the following chemical system. The solution should be
created using a Select statement.

Description of the process:

� Program the individual steps in AB

� Test the program

� How should E_STOP handling look ?

Project Name: proj_ab
Task Name: mix_lq

Resource: ?

M

M

GDoValveColorgDoValveWater

gDoValveDrain

gDiSensLow

gDiWater_ok

gDiSens_full

gDoMixer

gDoPumpDraingDiStart

Press start...
Open water valve

Water OK reached...
Close water valve,
Switch on stirring mech.,
Open color valve

Sensor Full reached...
Close color valve,
Wait 30 sec.
Open drain valve
Switch on drain pump

Sensor Low reached...
Switch off pump
Switch off stirring mech.
Close drain valve

Example: Chemical system section

Schulung / Training

8. Automation BasicB&R Automation StudioTM

Page 8.16Training ASPROG

2.11 Working with Function Blocks

2.11.1 FBK Call

The function blocks are called like commands. They are accessed using their name.
In brackets, then input and output variables follow in order beginning with the first
input.

Example of a 2 second turn-on delay:

(* Function block call *)

Preset := T#2s;

TON(Input, Preset, Off, Elapse)

or:

TON(Input, T#2s, Off, Elapse)

IMPORTANT
All input and output parameters must be entered !

2.11.2 Alias FBK Call

The main difference between an alias call and the procedure used previously is that
values are assigned using a freely selectable structure name / alias name and
structure elements with the same name as the FBK parameters.

Example: Alias call for TON function block (Library: Standard)

time = T#2m_30s_500ms ; Value assignment

TON_xx.IN := Input ; Alias input parameter
TON_xx.PT := time ; Order is not critical

; Any program section

TON_xx FUB TON() ; Alias FBK call

; Any program section

Elapse := TON_xx.ET ; Alias output parameter
Output := TON_xx.Q ; Alias output parameter

8. Automation BasicB&R Automation StudioTM

Page 8.17Training ASPROG

Example
Use a 16-bit up/down counter

The count procedure should be carried out by the CTUD function block
(Library: Standard).

The CTUD FBK requires the following parameters:

The function block is to be called using a normal and an alias call.

Project Name: proj_ab
Program Name: ab_fbk

Resource: ?

Input/Output Parameter Type Description

 � CU BOOL Up counter input

 � CD BOOL Down counter input

 � RESET BOOL Reset counter to 0

 � LOAD BOOL Load counter with preset value

 � PV UINT Preset value and compare value

 � QU BOOL TRUE, if CV >= PV

 � QD BOOL TRUE, if CV <= 0

 � CV UINT Current count

 Tab. 8.12: Parameter list for CTUD FBK

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.1Training ASPROG

DATA HANDLING

1. OVERVIEW.. 2

2. PROCESS VARIABLES ... 3

2.1 General Information ... 3

2.2 Data .. 4

2.3 Basic Data Types .. 5

2.4 User Data Types ... 7

2.5 Function Block Data Types .. 17

2.6 Dynamic Process Variables .. 20

3. DATA MODULES.. 28

3.1 General Information ... 28

3.2 What is a data module ? ... 29

3.3 What advantages does a data module offer ? 30

3.4 Creating a Data Module in AutomationStudio 31

3.5 Reading a Data Module from the Application 34

3.6 Creating and Writing to a Data Module from the Application38

3.7 Autonomous Data Module Memory 40

4. MEMORY MANAGEMENT .. 41

4.1 General Information ... 41

4.2 Memory Access .. 42

4.3 Location .. 43

4.4 Memory Organization .. 47

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.2Training ASPROG

1. OVERVIEW

Process Variables
For optimal control and separation of information, the user is provided various
“Basic Containers” to store data. They can be combined as desired. Simple and
flexible access possibilities are available.

Data Modules
Information should often be clearly structured as tables, lists, recipes. Compact and
simple access possibilities are provided.
Data modules have overwrite protection.

Memory
Different conditions make it necessary for programmers to store data using suitable
memory media with respective physical properties.

9. Data HandlingB&R Automation StudioTM

Page 9.3Training ASPROG

2. PROCESS VARIABLES

2.1 General Information

Basic Data Types
BOOL, USINT, UINT, UDINT, SINT, INT, DINT and REAL with an array length
of one in the variable declaration.

User Data Types
Organization of data in clear units, arrays, structures, arrays of structures.

Function Block Data Types
Grouping input/output data and internal FBK information using alias PVs.

Dynamic Process Variables
A powerful tool used for simple solutions to complex applications.

9. Data HandlingB&R Automation StudioTM

Page 9.4Training ASPROG

2.2 Data

We will begin with the question: “What do we want to save ?”

� Program code

� Recipes

� Tables

� Machine options

� Process variables

� IO information

� Internal variables

� Parameters

� Status values

� ...

� ...

This is information with very different uses for the contents.

In order to describe this information using a common term, we will refer to it as
data to be processed.

This data is stored in memory.

Memory is the sum of all containers where information can be placed.

Fig. 9.1: Memory = containers

9. Data HandlingB&R Automation StudioTM

Page 9.5Training ASPROG

2.3 Basic Data Types

2.3.1 What is a basic data type ?

Our data can be placed in memory. This consists of a certain number of consecutive
units.

Such a unit consists of 8 bits and is referred to as a byte or USINT according to
IEC61131.

Each of these USINTs = memory locations, has a unique number similar to the
address of a house. Using this address, the memory address, AutomationRuntime
or our application can access the content of this memory address (read or write).

In our programs, we do not use direct addresses. Instead we use a symbolic names
as synonyms for the addresses (PV names).

A memory location interpreted as USINT has a value range from 0...255,
or interpreted as SINT from -128..0..+127.

If the information we want to save in memory has a larger values, we have to sepa-
rate it over several memory locations and interpret it accordingly.

To do this, the compiler provides different container sizes, the basic data types
defined in the IEC61131 standard.

Fig. 9.2: Basic data types

9. Data HandlingB&R Automation StudioTM

Page 9.6Training ASPROG

2.3.2 How do I use basic data types ?

In the declaration, the AutomationStudio is informed of how much memory is
should reserve in AutomationRuntime for a static PV.

When using a PV which is not yet recognized in AS, the programmer is requested to
select a suitable data type in the declaration using
Project: Create or Project: Create all.

Fig. 9.3: Selecting a basic data type

Note
Relationship between type and bit size:

SINT .. 8 BIT “S” stands for short
INT .. 16 BIT No special format
DINT .. 32 BIT “D” stands for double

9. Data HandlingB&R Automation StudioTM

Page 9.7Training ASPROG

2.4 User Data Types

Arrays
An array is the grouping of PVs with the same data type that belong together. This
grouping has two major advantages:

� One variable name, access various contents using index

� The PVs are all alligned consecutively and can therefore be easily accessed
using a pointer

A string is a special form of array.
A string is a zero terminated USINT array.

Structures
A structure is the grouping of PVs with different data types that belong together.
This grouping has some major advantages:

� Help with the organization of complex data sets

� The PVs are all alligned consecutively and can therefore be easily accessed
using a pointer

Arrays of Structures
A combination of arrays and structures. If a structure is needed often e.g.:
positioning several axes, an arrays is placed over it and the structure is applied
several times consecutively.

9. Data HandlingB&R Automation StudioTM

Page 9.8Training ASPROG

2.4.1 What is an array ?

If you need to manage several units of information with the same size (same data
type) that belong together, an array is the simplest solution.

If e.g.: several temperatures are to be saved as INT, an array with a PV name and a
corresponding number of elecments can be used as user data type instead of
individual variables.

The selection of the desired elements takes place using an index between square
brackets. This index provides programming advantages when handling this array
variable e.g.: access using loop commands !

Fig. 9.4: User Data Type Array

9. Data HandlingB&R Automation StudioTM

Page 9.9Training ASPROG

2.4.2 How do I create an array ?

In the declaration, the programmer defines the data type of the PV and also the array
length which corresponds to the number of elements desired.

Fig. 9.5: Defining the array length

9. Data HandlingB&R Automation StudioTM

Page 9.10Training ASPROG

2.4.3 Tips for Arrays

� The largest index possible is always the array length - 1 !

� Begin with array index 0.

Note
The defined array range can be exceeded by entering an index that is too large.

In the following example, the reserved memory for the array PV “pvusint_array“
exceeded and a PV which may follow is overwritten !

pvusint_array[5] := 123;

Such errors (which are difficult to find) should be avoided by careful
programming!!

From Library Function Name Short Description

AsString memcpy() Copying an array, length is to be entered explicitly

---------- sizeof() Determine array length

 Tab. 9.1: Corresponding functions

9. Data HandlingB&R Automation StudioTM

Page 9.11Training ASPROG

2.4.4 Strings are also Arrays

� A string is a special type of array.

� A USINT is required for each character.

� Strings are to be declared in the variable declaration as USINT arrays.

� The end of a string is coded using a 0 in the last element (zero termination).

� Therefore an additional array element must be reserved for zero termination.

Tab. 9.2: Corresponding functions

From Library Function Name Short Description

AsString strcpy() Copy a string up to zero termination

AsString strcat() Combine two strings

AsString strlen() Determine string length

AsString itoa() Convert an integer value to a string

SYS_LIB DIS_str() Output a string on the 2010 status display

SYS_LIB DIS_chr() Output a character on the 2010 status display

SYS_LIB DIS_clr() Clear the status display on the 2010

STANDARD str3= concat(str1,str2) Combine 2 strings after str3

STANDARD str2=delete(str1,L,P) Delete L character from str1 beginning at P

STANDARD P=find(st1,str2) Find position P of string str2 in string str1

STANDARD str3=insert(str1,str2,P) Insert str2 after str1 at position P, save in str3

STANDARD str2=left(str1,L) L on left of str1 character to str2

STANDARD str2=right(str1,R) R on right of str1 character to str2

STANDARD str2=mid(str1,L,P) L character from position P from str1 to str2

STANDARD L=len(str1) Determine string length L of str1

STANDARD str3=replace(str1,str2,L,P) Replace L characters starting at position P from str1 to str2

9. Data HandlingB&R Automation StudioTM

Page 9.12Training ASPROG

2.4.5 What is a structure ?

Units of information with the same size or even with different sizes often belong
together e.g.: the date elements Day, Month and Year belong together.

The structure user data type can be used to clearly show that these elements belong
together in the program code.

A structure consists of basic data type elements which belong to a higher level PV,
the PV with data type structure. These elements are separated from the higher level
PV by a “.”.

Fig. 9.6: User Data Type Structure

9. Data HandlingB&R Automation StudioTM

Page 9.13Training ASPROG

2.4.6 How do I create a structure ?

Structure data types are clearly handled in a separate editor.
Using menu item Open: Data Types, a new structure can be created using the
toolbar and its elements can be entered or changed.

Fig. 9.8: Selecting the structure data type

Fig. 9.7: Handling structures

In the declaration, the programmer selects the structure type:

9. Data HandlingB&R Automation StudioTM

Page 9.14Training ASPROG

2.4.7 Tips for Structures

The compiler automatically (implicitly) follows the memory access rules when
reserving memory for PVs required by AutomationRuntime or AutomationTarget.

An example of such a rule is:
PVs with a data type larger than USINT always beging in a structure on an even
memory location !

Therefore this rule, which is called allignment behavior of the compiler in the
programming language, must be followed by the compiler during memory
management.

If necessary, the compiler will insert filler bytes in the structure. However, they
remain hidden from the user i.e. memory is reserved but cannot be directly accessed
using a PV name.

Note
To make these filler bytes visible, the programmer should handle the allignment
behavior explicitly using reserve bytes.

Advantages:

� If the structure needs to be expanded later, a reserve byte can be used without
changing the structure size !

� On different platforms, different alignment rules could be required. Explicit
alignment allows platform independent,
portable code !

From Library Function Name Short Description

AsString memcpy() Copy a structure, length is to be entered explicitly

AsString sizeof() Determine structure length

 Tab. 9.3: Corresponding functions

9. Data HandlingB&R Automation StudioTM

Page 9.15Training ASPROG

Example
An axis should be positioned.

The following data is required for positioning:

� Name [USINT]

� Target position [INT]

� Speed [INT]

� Acceleration [INT]

� Active [USINT]

Organize the elements under a common topic as a structure and then use it as data
type for a PV that you assign values to in the INIT SP of the program.

Check the results in Watch !

Project Name: Data
Program Name: dt_ex

Resource: C#4

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.16Training ASPROG

2.4.8 Combination of Array and Structure

In the declaration, the programmer selects a structure data type and defines the array
length for the desired number of elements.

Fig. 9.9: Selecting the structure data type with array length

9. Data HandlingB&R Automation StudioTM

Page 9.17Training ASPROG

2.5 Function Block Data Types

Function blocks process input data and create output data using internal variables.

In order to have a clear overview of the data, it can be organized with a structure.

The data type is provided to the programmer by the LibraryManager in
AutomationStudio according to the respective FBK.

2.5.1 Declaration of an Alias PV

In the declaration, the programmer has to select the data type belonging to the FBK.
Using the data type, the compiler recognized which FBK code should be called for
text-based IEC languages and AB.

A PV with function block data type is called an Alias PV.

Fig. 9.10: Selecting a function block for an Alias PV

9. Data HandlingB&R Automation StudioTM

Page 9.18Training ASPROG

The FBK call can be made from the main menu item Insert: Function.

Fig. 9.11: Inserting a FBK call

9. Data HandlingB&R Automation StudioTM

Page 9.19Training ASPROG

Example
Controlling the external fan for a spindle motor.

When switching the spindle motor off by resetting the PV gDoMotor to 0, the fan
motor, which is controlled by the PV gDoFan, should continue running for 10
seconds.

Program a turn-off delay using the TOF FBK in AB and check the behavior.

Project Name: Data
Program Name: dt_ex

Resource: C#4

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.20Training ASPROG

2.6 Dynamic Process Variables

2.6.1 What is a dynamic process variable ?

The PVs used up til now have a fixed location in memory. The content of these
memory locations can be referenced by name and processed.

If you want to access a different memory location, you have to use the name of the
PV that is assigned to this memory location.

When compiling, this PV is assigned a fixed address which cannot be influenced by
the user during runtime.

These types of PVs are called static variables !

However, a PV name should often be used that can access different memory
locations. To do this, the PV is declared as pointer and a fixed address is not
assigned when compiling !

The memory location that the point should access can be defined by the user during
runtime, this is referred to as “defining a reference for the pointer”.

These types of PVs are called dynamic variables !

The content of the memory locations is interpreted according to the selected data
type beginning at the start address. The data type of the dynamic PV functions as a
mask.

Fig. 9.12: Dynamic process variables

9. Data HandlingB&R Automation StudioTM

Page 9.21Training ASPROG

2.6.2 Determining the Address

AutomationStudio assigns each static PV an address offset which is linked to free
memory addresses on the AutomationTarget by AutomationRuntime.

The memory address for a PV can be determined in the application program in
language AB using the operator “adr()”.

It returns the address as a UDINT value.

;** Example **
Adr_PvInt:= adr(PvUint)

Fig. 9.13: Determining the address of a PV using operator adr()

9. Data HandlingB&R Automation StudioTM

Page 9.22Training ASPROG

Example
Create an array of axis structures with array length 3 to provide X,Y,Z axis
coordinates for a CNC system.

Analyze the division of memory for the axis structure using the “adr()” operator and
enter the information in the following sketch.

In the column “Address”, enter the memory addresses that have been determined. In
the column “Memory Content”, indicate the alignment fillers using hatch marks in
the memory locations. In the column “PV Name”, enter the corresponding structure
element.

Note
Determining the memory address of a structure element using “adr(
Topic.Element)”

Address

16#

PV Name

axis[0].name16#

16#

Memory Content

16#

16#

axis[1].name16#

Fig. 9.14: Memory content

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.23Training ASPROG

2.6.3 How do I create a dynamic process variable ?

In the declaration, the programmer defines two points:

� Data type
Defines the “mask” used later to interpret the contents of the�referenced
address

� Dynamic scope
The address offset is assigned to the PV during runtime

Fig. 9.15: Defining a dynamic PV

9. Data HandlingB&R Automation StudioTM

Page 9.24Training ASPROG

2.6.4 Access

A dynamic PV can be assigned a memory address during runtime, this procedure is
called referencing or initializing.

As soon as a dynamic PV is initialized, it can access the contents of the memory
location it is “pointing” to according to the data type.

In the program code, a dynamic PV is used like a static PV after initialization.

Fig. 9.16: Access

9. Data HandlingB&R Automation StudioTM

Page 9.25Training ASPROG

Example

Create an array variable with length 30 and data type USINT.
Enter the values in the elements using the PV Monitor.

Create a dynamic PV with data type:

� USINT
� UINT
� INT

and “place” it over the array variable as mask.

Begin with the start address of the array variable and then „shift“ the mask by
increasing an offset !

Compare the value interpreted using the mask with the value in the array variable !

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.26Training ASPROG

Example
AutomationRuntime receives positioning data AutomationNet.
This data should be saved in an array variable “receive”, data type USINT[30].
Enter the values in the array variable using the PV Monitor.

Create a dynamic PV with the axis data type for an axis and use it as a mask to
evaluate the data received from the array “receive”.

Initialize the dynamic PV with the start address of the array PV and handle the
selectable data set number using an additive offset.

Memory Content PV NamePV Name

receive[0]

receive[10]

dynaxis.name

dynaxis.speed

dynaxis.acceleration

dynaxis.position

dynaxis.active

dynaxis.name

dynaxis.speed

dynaxis.acceleration

dynaxis.position

dynaxis.active

Fig. 9.17: Memory mask

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.27Training ASPROG

2.6.7 Programming Techniques for Dynamic PVs

Preparing dynamic PVs provides the programmer all the possibilities needed to
create flexible, compact and high performance code for automation solutions.

Using pointers, it is possible to access and evaluate the entire application memory.

It is important to guarantee correct, controlled initialization of dynamic PVs.

Humans make mistakes, and programmers are human so certain steps should be
taken when using dynamic PVs to prevent uncontrolled memory manipulation.

Note
Discuss the possibilities for control of dynamic memory access in the group and
keep in mind the need to correctly use this powerful tool – “Dynamic PVs” !

9. Data HandlingB&R Automation StudioTM

Page 9.28Training ASPROG

3. DATA MODULES

3.1 General Information

What is a data module ?

What advantages does a data module offer ?

Creating a Data Module in AS

Reading a Data Module from the Application

Creating and Writing to a Data Module from the Application

Autonomous Data Module Memory

9. Data HandlingB&R Automation StudioTM

Page 9.29Training ASPROG

3.2 What is a data module ?

Data modules make it easier to manage information and increase flexibility. A data
module is a memory area which is reserved in a continuous section. The content of
this data module (memory area) can be entered using a simple ASCII editor, the
Data Module Editor using a user defined mask. The content of the data module can
also be written to by the application. The data in the module can be transferred from
AutomationStudio to AutomationRuntime or from AutomationRuntime to
AutomationStudio!

AutomationTarget LS251

Memory

AutomationStudio with Data Module Editor

Transfer

1000

2000

3000

4000

5000

6000

Module header

Checksum

D
a

ta
C

o
n

t e
n

t

Fig. 9.18: What is a data module ?

9. Data HandlingB&R Automation StudioTM

Page 9.30Training ASPROG

3.3 What advantages does a data module offer ?

We are already farmiliar with managing information in process variables which are
physically stored in RAM.

The following questions are often asked concerning the special requirements for
data management in modern automation applications:

� How can I protect against data loss during a warm start or power failure if a
backup battery is not available ?

� How can I protect against data loss during a cold restart ?

� How can I increase the amount of data in a simple and flexible manner ?

� How can I define or limit read and write access rights for a section of my
data ?

The following flowchart shows possible solutions:

PV Data

Cold start safe

Warm start safe

Data
module

Extend data

Access rights

Via PC
visualization

Via PC
visualization

Permanent
memory

Change code

Fig. 9.19: Data module solutions

9. Data HandlingB&R Automation StudioTM

Page 9.31Training ASPROG

3.4 Creating a Data Module in AutomationStudio

Create a data module in a software tree using Insert:New Object and making the
selection Data object = Data module.

Like every other module, give the data module a unique name which can be used by
the application to read or write data during runtime.

Fig. 9.20: Creating a data module

9. Data HandlingB&R Automation StudioTM

Page 9.32Training ASPROG

By double-clicking on the object, an easy to use ASCII editor with syntax coloring
is opened to enter data in the data module.

The user enters data or comments here.

Comments are all started with a semicolon and allow flexible construction of a
mask, e.g.: represented as follows for a table

Data is separated in a line by a comma or line break.

Data can be entered as follows:

� Numerical in decimal, hexadecimal or binary format

� as ASCII text without zero termination between ‘text’

� as ASCII string with zero termination between “string“

Numerical values can be entered as whole numbers or real values with decimal
point.

Note
The memory reserved for the value, the data type, is determined by the value range
and the number of characters !

Fig. 9.21: Data Module Editor

9. Data HandlingB&R Automation StudioTM

Page 9.33Training ASPROG

Example
Data module handling

� Create the following data module with the name “table”:

;———————————————————————————
,———— Positioning data——————
;+——————————————Positioning variant
;| A/R..Absolute/Relative
;| +——————————Target pos./Positioning path
;| | [DINT]
;| | +——————Positioning speed
;| | | [UINT]
;| | | +——Acceleration
;| | | | [UINT]
;| | | | ———————————
“A“, 00020000, 30000, 10000 ; 1st positioning step
“R“, 00000100, 00200, 10000 ; 2nd positioning step

� Transfer the data module to the PCC and check if the module is on the PCC.

� Create another data module with the name “t_text”.
Make sure that the second line is NOT zero terminated.

; 1 2 3
;1234567890123456789012345678901234
;
“This is our second data module! “
‘This is the second line ‘

� Transfer the data module to the PCC and check if the module is on the PCC.

Data module name: table, t_text

Resource: DAT

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.34Training ASPROG

3.5 Reading a Data Module from the Application

The B&R “Syslib” library provides the function blocks needed to allow simple data
module access so the application can read the contents. They can be used as shown
in the following diagram:

Check the FBK status value
if statusDA_ident = OK then

Check the FBK status value
if statusDA_info = OK then

Search for data module ID
using names

DA_ident(“name”,..,adr(ID))

Get the start
address of the data

using the ID
DA_info(ID,...,adr(SA))

Read the data
using

dynamic PV access SA
or

DA_read(ID,...)

Error handling !

else

else

Fig. 9.22: Reading a data module

9. Data HandlingB&R Automation StudioTM

Page 9.35Training ASPROG

Detailed information about function block parameters can be found in the
AutomationStudio online help.

Fig. 9.23: Step 1

Fig. 9.24: Step 2

Fig. 9.25: Help information

9. Data HandlingB&R Automation StudioTM

Page 9.36Training ASPROG

Example
Write a task to read positioning data from the data module “table”.

� To do this, create a dynamic structure with length 2 over the table.

� The data should be copied to a static PV with positioning structure type.
The following possibilities are available:

memcpy(...)
DA_read(...)

Read the respective online information concerning the function blocks and
select one of the possibilities.

� Use the INIT SP to determine the data module system information

� Overwrite one of the values from the static structure PV and then from the
dynamic structure PV in the PV Monitor and check the reaction of
AutomationRuntime !

Program name: da_struc

Resource: C#4

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.37Training ASPROG

Example
Write a task that reads the following information from the data module “t_text”.

� Copy the first line of your data module to the byte array “ASCII_1” using the
function:
”strcpy(target address, source address)”.

� Read the 3rd byte from the data module and write it to the variable
“spec_byte”.

� Copy the second line of your data module to byte array “ASCII_2”. To do
this, use a loop and the dynamic PV “DYN_PV”.

Program name: da_read

Resource: TC#4

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.38Training ASPROG

3.6 Creating and Writing to a Data Module from the Application

The B&R “Syslib” library provides the function blocks needed to allow the
application to create a data module used to save user parameters during runtime.
Write access to the data module takes place in a controlled manner using a write
function which automatically carries out the checksum correction. These functions
can be used as shown in the following diagram:

Check the FBK status value
if (statusDA_create = OK) and (statusDA_ident = OK) then

Check the FBK status value
if statusDA_write = OK then

Create a data module
and define name, length, etc.

DA_create(“name”,..,length,...)
DA_ident(...)

Write data
in data module using ID

DA_write(ID,...)

Save the data module
in FIXRAM or USR-ROM via

DA_burn(ID,...)
DA_copy(ID,...)

DA_fix(ID,...)
Error handling !

else

else

Fig. 9.26: Creating, writing to and saving a data module

9. Data HandlingB&R Automation StudioTM

Page 9.39Training ASPROG

Example
To practice creating and writing to data modules, write a task that carries out the
following actions:

� A data module which is initialized by a structure should be created when a
positive edge occurs on an input.

Struktur: init_da
.USINT_var: USINT 1
.UINT_var: UINT 1
.USINT_array: USINT 10 (String)

If the data module was already created, all necessary parameters,
e.g.: module length, should be requested from AutomationRuntime.

� The structure has to fit in the data module 3 times.

� The entire data module should be created using initialization values,
with values <> 0

� The values are read using dynamic variables to check the content of the data
module.

� Check the length of the data module. Does it correspond to the length you
expected?

� Change the element UINT_var in the data module when a positive edge
occurs on an input. An analog value should be written to the variable.

Program name: da_first

Resource: ??

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.40Training ASPROG

3.7 Autonomous Data Module Memory

A data module created by the application using DA_create(...) is normally placed in
USR RAM so that the data can be manipulated.

If it is also necessaray to protect the information in the data module during a warm
and cold start, the data module can be copied to USR ROM.

If the information in the data module should be changed again, it must be saved in
USR ROM again and the old memory is marked as being bad. Memory that is
marked as being bad can be released again by deleting the USR ROM, but all tasks
are normally lost.

Therefore, AutomationRuntime provides the application a special area in FLASH
(DM_USER_FLASH) for autonomous management of data modules on the
following AutomationTargets:

� B&R2003: CPx70, CPx74

� B&R2005: XP152, IF152, IP161, CP260, IF260

� B&R2010: IF100, IF101

This 64 kByte memory area can be manipulated by the user. The user can delete this
area of the FLASH independent of the USR ROM.

AutomationRuntime provides the following services in the library “DM_LIB.BR” to
manage this memory:

� DMclear() .. Delete DM USER FLASH

� DMstore() .. Store data module in DM USER FLASH

� DMfree() .. Information, how much DM USER FLASH is still free

9. Data HandlingB&R Automation StudioTM

Page 9.41Training ASPROG

4. MEMORY MANAGEMENT

4.1 General Information

We will summarize memory management using the folowing questions.

Memory Access
Who can save data ?

Location
Where can data be saved ?

Memory Organization
How can information be saved ?

Who can reserve and allocate memory ?

9. Data HandlingB&R Automation StudioTM

Page 9.42Training ASPROG

4.2 Memory Access

Who can read, write and store data ?

In general, there are two possibilities for memory access:
access by the user and by the system.

User

� Application
Programs work with PVs

� AutomationStudio
Install modules, watch, etc.

� Operator + Visualization
Human-Machine Interface (HMI)

System

� Internal variables/data from AutomationRuntime

� Input data from hardware modules

� Communication using Interfaces

These two types of tasks are very different and therefore have different requirements
for storing and accessing data.

Fig. 9.27: Memory access

9. Data HandlingB&R Automation StudioTM

Page 9.43Training ASPROG

4.3 Location

We have found out that data are needed by different users to complete their tasks.

The data is stored in memory according to the requirements mention previously.
Two subdivisions exist:

� Physical location

� Logical location

The characteristics and purposes of these two locations will be repeated and
summarized in the following sections.

logical

physical

Fig. 9.28: Memory locations

9. Data HandlingB&R Automation StudioTM

Page 9.44Training ASPROG

4.3.1 Physical Memory Locations

An AutomationTarget has various physical memory media.

modular

onboard

Effect after:
Warm Start

Effect after:
Cold Start

Special Properties

DRAM

 All memory locations
have the value 0

All memory locations
have the value 0

Very fast access

SRAM

Memory is remnant

All memory locations
have the value 0

Each bit can be reset
individually

FLASH

Memory is remnant

Memory is remnant

Nonvolatile

...

...

...

...

...

...

Notes
Concerning the terms above:

� modular............... modular user memory, e.g.: Memcard or MExxx

� onboard................memory is directly in the AutomationTarget module

� remanent...............memory is not changed by AutomationRuntime

A detailed description can be found in the hardware manual, the AutomationStudio
online help or on the Internet homepage.

Tab. 9.4: Physical memory

9. Data HandlingB&R Automation StudioTM

Page 9.45Training ASPROG

4.3.2 Logical Memory Location

The memory is provided to AutomationRuntime using physical blocks.
AutomationRuntime separates the physical memory into logical units. It separates
the RAM and FLASH into a User and System area. The User and System areas are
also separated into smaller, independent areas.

Fig. 9.29: Physical and logical memory locations

9. Data HandlingB&R Automation StudioTM

Page 9.46Training ASPROG

Name

Content

Effect after
Warm Start

Effect after
Cold Start

Special Properties

USR RAM Program +
Data modules

Memory is
remanent

All memory
locations have the
value 0

Data in modules has
checksum protection

USR ROM Program +
Data modules

Memory is
remanent

Memory is
remanent

Data in modules has
checksum protection

FIX RAM Program +
Data modules

Memory is
remanent

Memory is
remanent

Cold start safe

DM_USER Data modules Memory is
remanent

Memory is
remanent

Flash can be organized and
deleted by the application

DPR Local +
global PVs

Memory is
remanent

All memory
locations have the
value 0

Access of PVs also possible
from other automation targets
& PVI

Permanent
Memory

Freely
configurable

Memory is
remanent

Memory is
remanent

Cold start safe

Temporary
Memory

Freely
configurable

All memory
locations have
the value 0

All memory
locations have the
value 0

Large memory blocks can be
reserved during runtime

User

Stack FBKs &
Freely
configurable

All memory
locations have
the value 0

All memory
locations have the
value 0

For user function blocks

SYS ROM System +
Data modules

Memory is
remanent

Memory is
remanent

Modules are also activated in
diagnose mode

Static RAM Automation
Runtime

All memory
locations have
the value 0

All memory
locations have the
value 0

Area protected from the user
for logbook, system tables,
etc.

System

Stack Automation
Runtime

All memory
locations have
the value 0

All memory
locations have the
value 0

For system function blocks

Tab. 9.5: Logical memory

In the following table, the locations are summarized again including typical content
and warm and cold start behavior.

Schulung / Training

9. Data HandlingB&R Automation StudioTM

Page 9.47Training ASPROG

4.4 Memory Organization

B&R AutomationRuntime provides various easily implimented methods for storing
data.

This allows various requirements to be met e.g.: data with defined access rights.

All AutomationRuntime versions offer the following possibilities:

� Process variables

� Dynamic memory allocation

� Data modules

Process variables allow simple and direct access of data memory using symbolic
names.

Dynamic memory allocation allows flexible memory organization during runtime.

Data modules capsule data in protected areas which include all B&R module
characteristics e.g.: checksum test, download, upload, data editor in
AutomationStudio, etc.

Fig. 9.30: Memory management

9. Data HandlingB&R Automation StudioTM

Page 9.48Training ASPROG

Before we can access the memory (use it), someone has to reserve it for us. The
memory must be organized.

This is important so that each user receives a separate, assigned area.

Memory can be organized in two ways:

� static

� dynamic

Static memory is automatically reserved by the compiler when using PVs and the
relationship between PV name and the reserved memory address is entered in a PV
table.

Dynamic memory is requested from AutomationRuntime by the user in the
application using FBKs and referenced using a dynamic PV. For programming,
requesting memory is referred to as “Allocation”. Dynamic memory can be
requested during runtime with a selected size, therefore the user has very flexible
memory organization which can be changes as desired during runtime.

$A001

$A001

$B002

$B002

PV Table
Prg

DPR

USR RAM

if PV1 > 100 then
.
.

if dPV > 200 then
.
.

PV1

dPV

Applicatio
n

Compiler

Fig. 9.31: Memory organization

10. Timing Processor UnitB&R Automation StudioTM

Page 10.1Training ASPROG

TIMING PROCESSING UNIT

1 OVERVIEW... 2

2 TIMING PROCESSING UNIT .. 3

2.1 What is a Timing Processing Unit ? 3

2.2 Block Diagram of a Processor with TPU 3

2.3 Functions .. 4

3 TPU MODULES ... 5

3.1 B&R AutomationTarget 2003 .. 5

3.2 B&R AutomationTarget 2005 .. 6

4 LTX FUNCTIONS .. 7

4.1 Configuration of the Hardware... 7

4.2 Use of LTX Functions .. 8

4.3 Example Gate Measurement .. 9

Schulung / Training

10. Timing Processor UnitB&R Automation StudioTM

Page 10.2Training ASPROG

1 OVERVIEW

Timing Processing Unit
A Timing Processing Unit is used when creating solutions for time critical
applications because it allows certain events to be reacted to in the µs range.

TPU Modules
This chapter provides an introduction to the major parts of a TPU and an overview
of the hardware available for such applications.

LTX Functions
Selecting and inserting functions used to operate a TPU in Automation Studio are
explained in detail here. Examples are also provided.

10. Timing Processor UnitB&R Automation StudioTM

Page 10.3Training ASPROG

2 TIMING PROCESSING UNIT

2.1 What is a Timing Processing Unit ?

A Timing Processing Unit, (TPU) is an additional hardware unit which supports the
CPU. It can be used to execute simple and also time critical functions without
loading the CPU.

With each action that occurs, e.g. positive edge on an input, an LTX function is
called. These functions are processed by the TPU. This allows reaction times in the
µs range.

LTX ... Logic Timing Functions

2.2 Block Diagram of a Processor with TPU

After selecting the desired functions , the TPU Code Linker in Automation Studios
creates code which is placed in TPU RAM during a warm start by the CPU on TPU
capable modules.

Then this memory area can only be accessed by the TPU.

Fig. 10.1: Block diagram of a processor with TPU

RAM TPU

Code created by

TPU Code Linker

Timing Processing Unit

LTX function
called in the task

CPU
Central Processing Unit

Intermodule Bus

10. Timing Processor UnitB&R Automation StudioTM

Page 10.4Training ASPROG

2.3 Functions

� Input recognition / input edge counter

� Output comparator

� Pulse width modulation

� Synchronized pulse width modulation

� Period measurement

� Period measurement with edge recognition

� Position synchronized pulse generator

� Stepper motor control

� Gate measurement

10. Timing Processor UnitB&R Automation StudioTM

Page 10.5Training ASPROG

3 TPU MODULES

3.1 B&R AutomationTarget 2003

DI135, DO135, AI261, AI294, AI351, AI354, AI774, AO352, NC161

These screw-in modules can also be operated on the left of the CPU. However, the
integration of LTX functions is only possible on the CP interface.

3.1.1 DI135

Features:

� 4 high speed digital inputs 24VDC

� Incremental encoder operation 50 kHz

� Event counter operation 100 kHz

� 1 comparator output 24 VDC

Area of use:

� Period measurement

� Gate measurement

� Incremental encoder / encoder

Typical applications:

� Bottling system, etc.

10. Timing Processor UnitB&R Automation StudioTM

Page 10.6Training ASPROG

3.1.2 DO135

Description:

� Digital output module with 4 FET outputs

� Switching voltage 12-24VDC

� Continuous current max. 0.1A

� Max. switching frequency 100 kHz

Area of use:

� Pulse width modulation

� Stepper motor control

� Absolute encoder (SSI)

Typical applications:

� Temperature control for extruders

� Stepper motor control, etc.

Note
All other modules and detailed information are contained in the 2003 User’s Manu-
al.

3.2 B&R AutomationTarget 2005

� IP151

� IP152

� IP161

� IP350

All of these modules have high speed analog / digital inputs and outputs which
can be accessed using TPU functions. Detailed information and areas of use can be
found in the 2005 User’s Manual.

10. Timing Processor UnitB&R Automation StudioTM

Page 10.7Training ASPROG

4 LTX FUNCTIONS

4.1 Configuration of the Hardware

In order to work with LTX functions, the required hardware modules must be
inserted in AS. The hardware definition can take place in two ways.

� Load hardware configuration from target system
This method can always be used,
if the hardware is already available during project creation.

� Insert hardware manually

Fig. 10.2: Inserting hardware in AS

10. Timing Processor UnitB&R Automation StudioTM

Page 10.8Training ASPROG

4.2 Use of LTX Functions

AS provide the user with a large selection of LTX functions. After inserting such a
function block, code is generated which is stored in the folder CPU -> System.
This code is copied to TPU RAM after a warm start.

4.2.1 Inserting LTX Functions

To integrate this FBK, select the TPU tab.

Note
The TPU tab is only available for modules with TPU functionality.

Fig. 10.3: Importing the library

Fig. 10.4: Integrating TPU functions

10. Timing Processor UnitB&R Automation StudioTM

Page 10.9Training ASPROG

4.3 Example Gate Measurement

The frequency of a signal should be determined.

The signal comes from a digital output which toggles and is connected with the
DI135 input.

� Select a suitable LTX function block

� Calculate the frequency in a timer task class

� Create task with toggle output

Project Name: tpu_pro1
Task Name: frq_cnt

Resource: T#1

Task Name: toggle
Resource: ???

Schulung / Training

10. Timing Processor UnitB&R Automation StudioTM

Page 10.10Training ASPROG

4.3.1 Gate Measurement Instructions

Fig. 10.5: Insert an LTX FBK

Fig. 10.6: Select the LTX function

10. Timing Processor UnitB&R Automation StudioTM

Page 10.11Training ASPROG

Note
After selecting the FBK, select the CPU tab again for programming. In this way, the
code for this function is automatically generated and integrated in CPU->System.
The extended help can be opened by pressing the F1 key with the TPU tab selected.

Additionally, a library is imported where the FBKs used are entered. Now it is
possible to insert the function blocks in the program.

Inserting a Function in LAD

Calculating the Frequency:
Using the FBK for gate measurement, the frequency of the
signal can nopw be calculated.

Note
The entire solution can be found in help

Fig. 10.8: Select the desired LTX FBK

Fig. 10.7: Inserting the FBK in LAD

11. Library ManagerB&R Automation StudioTM

Page 11.1Training ASPROG

LIBRARY MANAGER

1 OVERVIEW... 2

1.1 Functions .. 3

2 LIBRARY MANAGER... 4

2.1 General Information ... 4

2.2 Term Definitions .. 5

2.3 Library Guidelines .. 6

2.4 Global Settings ... 8

3 B&R LIBRARIES ... 9

3.1 Overview of Standard Libraries ... 9

3.2 Online Help .. 10

3.3 Insert Library .. 12

4 USER LIBRARIES ... 15

4.1 Creating a Library... 15

4.2 Creating an IEC Function Block .. 18

4.3 Function Block Properties .. 19

4.4 FBK Interface ... 20

4.5 Source Code for the Function Block 21

4.6 Creating Online Help ... 24

4.7 Creating a C Library ... 24

4.8 Reusing Libraries ... 25

5 PG2000 LIBRARIES .. 27

5.1 PG2000 Porting Guide ... 27

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.2Training ASPROG

1 OVERVIEW

Library Manager
The Library Manager is used to manage all libraries used in a project. This chapter
provides a detailed description of the characteristics and possibilities of this tool.

B&R Libraries
This chapter contains an overview of the B&R Standards Libraries and an
explanation of how they can be inserted in a project and managed.

User Libraries
In addition to the standard B&R functions, the user also has the possibility to create
function. These functions can be grouped in libraries.

PG2000 Libraries
How can I add PG2000 Libraries to AS ?

11. Library ManagerB&R Automation StudioTM

Page 11.3Training ASPROG

1.1 Functions

1.1.1 Advantages of Functions

Automation Studio provides many standard functions for the user. It is also possible
to create functions. The use of functions has the following advantages.

� Saves time
It is possible to use existing functions instead of having to create them.

� Programs are clearer and easier to service
The program code contains parameters which are easy to understand and
check.

� Prevents unnecessary errors
 B&R standard function blocks are already tested, which prevents possible
typing errors or mistakes.

� Standardization of complex tasks
Large or commonly used program sections (positioning, control algorithms,
etc.) are thought through once and written in a form that allows users to
easily define parameters later.

� Multiple usage in further projects
A function is often used multiple times in a project which allows the solution
to be standardized and simplified.

11. Library ManagerB&R Automation StudioTM

Page 11.4Training ASPROG

2 LIBRARY MANAGER

2.1 General Information

The Library Manager (LibMan) is used to manage all libraries which are integrated
and defined in project.

With Library Manager, you can:

� Insert B&R standard libraries in a project

� Insert other libraries in a project

� Create and manage libraries

� Manage libraries created in PG2000 with AS

The Library Manager is started using the menu item Open: Library Manager.

Fig. 11.1: Opening the Library Manager

11. Library ManagerB&R Automation StudioTM

Page 11.5Training ASPROG

2.2 Term Definitions

Function
A function is a program organizational unit which returns exactly one value. A
function has one or more inputs but only one output. Therefore it can be called in
programs in a high level language directly as operand.

e.g.: if edgepos(gDiMotorStart) = 1 then

Function Block
The FBK ist a program organizational unit which returns one or more values. It has
one or more inputs and outputs.

Component
Function or FBK

Library
A library is a group of several components.

B&R Library
The libraries supplied by B&R which are used for B&R system software and
hardware functions are described as standard libraries.

User Library / Third Library
Library created by the user or by a third party.

Binary Library
A library without source text.

Source Library
A source library contains the source text for the components. The source code can
be changes at any time.

IEC Library
A library with components which are written in the languages B&R AB, ST, etc.
When creating such libraries, one of these of these languages can be used for each
component.

C Library
A library which is only written in ANSI C. All components are coded in this
language.

11. Library ManagerB&R Automation StudioTM

Page 11.6Training ASPROG

2.3 Library Guidelines

Libraries are designed to be used again and again. Therefore it is especially
important that they are well planned. This chapter shows a short section of the
library guidelines. The complete chapter is contained as an appendix.

2.3.1 Assigning Library Names

In order to make libraries easier to identify and service, they should be assigned
clear and meaningful names.

� A library should start with three characters which clearly identify the
designer (company) of the library. This character combination can consist of
letters and/or numbers.

� This character combination should be used for all libraries from the
company.

� Library names are presently limited to a maximum of 8 characters and are
defined as follows:

dddLllll

To improve clarity, the part of the name after the designer should begin with a
capital letter. The company code should begin with a small letter so that library
names also comply with the format for for variables.

Examples
br_Arith

br_ .. Code for B&R
Arith .. Name of the library

brTrRGL

br .. Code for B&R
Tr .. Code for training
RGL .. Code for control components.

RGL is written in capital letters because this will also be the
code for the components.

Abbreviation: Meaning

ddd Code for the designer

Lllll Name of the library

Tab. 11.1: Library name

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.7Training ASPROG

2.3.2 Assigning Component Names

Assigning function block and function names plays a very important roll in the
appearance of a library. The names should indicate the library that the component
belongs to and also has to indicate the functionality.

� Principally, 32 characters are available in AS for component names.

� The first word indicates the library. At least two characters and a maximum
of four characters must be used.

� All components in a library begin with the same characters
e.g.: ctrlValve, ctrlMotor, etc.

� Only the first letter of the individual words are capitals

� The functionality is then written in a clear form

Examples: ArithSum,

ctrlHeatValve

2.3.3 Version Management

Version numbers should be assigned to all libraries. The following format should be
used for the version entry.

The version number consists of four characters.

x.yy.ß:

x.. Increased by one for large changes. (yy becomes 0)
yy.. Increased by one for all changes

ß.. Used for Beta versions

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.8Training ASPROG

2.4 Global Settings

General LibMan settings can be made for the project using the menu item
Project: Settings. The dialog box can also be reached using the menu item
Edit: Properties if a library is selected in the left LibMan area.

� Standard directory
Shows the valid library standard directory. The libraries for the project are be
taken from here. The path is automatically set by AS and depends on the
defined operating system version.

� Library Directories
Additional directories can be entered where LibMan can search for libraries.

� Standard Target Memory for Libraries
The target memory for libraries can be set here.

Fig. 11.2: LibMan settings

11. Library ManagerB&R Automation StudioTM

Page 11.9Training ASPROG

Tab. 11.2: Library overview

3 B&R LIBRARIES

3.1 Overview of Standard Libraries

Library Short Description

ASControl Support of hardware modules

ASMath Mathematics functions not covered by the Operator
library

ASString Functions for memory manipulation and string handling

BRSystem Functions for CPU operation

C220man Functions for panel controller operation

CAN_lib Functions for CAN controller operation

CANIO Functions for B&R2003 CAN node operation

Convert Conversion functions according to IEC61131-3

DM_lib Storage of data modules in nonvolatile memory

DRV_3964 3964R protocol

DRV_mbus Modbus protocol

DRV_mn MiniNet protocol

DVFrame Frame driver library for serial interface operation

FDD_lib Serial floppy drive operation

IF361 Operation of IF361 interface module (Profibus DP Slave)

IF661 Operation of IF661 interface module (Profibus DP Slave)

INAclnt INA2000 client communication

IO_lib Functions for I/O module operation

NET2000 NET2000 protocol

Operator IEC61131-3 standard functions

PB_lib Profibus protocol (FMS)

PPdpr Functions for exchanging data between CPU and PP

RIO_lib Functions for remote I/O operation

Runtime Functions for internal support

Spooler Allows spooling of data on IPs

Standard IEC61131-3 standard functions

SYS_lib Various system functions

TCPIPMGR Functions for exchanging data using UDP or TCP

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.10Training ASPROG

3.2 Online Help

In AS, an online help system is available for the user with detailed descriptions of
all libraries. The help can be opened by pressing the F1 key in LibMan .

The online help offers the user various possibilities to search for topics.

Fig. 11.3: Online help system

� Contents
Shows an overview of the help topics. Clicking on the main topics opens the
lower level topics. Figure 11.3 shows a sample of this page.

� Index
Makes it possible to search for functions or topics.

� Search
Search for certain terms in all topics.

� Favorites
The path to commonly used help topics can be saved here. Simply click on
the topic and the corresponding help page is opened.

11. Library ManagerB&R Automation StudioTM

Page 11.11Training ASPROG

Example
Open the online help and search for information concerning the function block
TON_10ms.

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.12Training ASPROG

3.3 Insert Library

Using the menu itemInsert: Library or by clicking on the symbol , the required
dialog box is opened.

The list only shows libraries found in the standard directory and library directories.
However, it is possible to search for libraries in other directories using the Browse
button. The dialog box that is opened is used to navigate in the directory tree. The
“OK” button is only activated when a valid library structure is found in the
directory.

Fig. 11.5: Insert B&R library

Fig. 11.6: Standard library inserted

11. Library ManagerB&R Automation StudioTM

Page 11.13Training ASPROG

If you select the library on the left side, the following tabs are shown on the right
side:

� Data Types
The data types that come with the library are shown here. They can then be
used throughout the entire project.

� Constants
The constants required by and included with the library

Fig. 11.12: Data types/constants

If a component is selected from a library (see Fig. 11.11), then the respective varia-
ble declaration and I/O assignments are shown on the right side.

If detailed information is needed concerning a function block, it can be found in the
online help. If the FBK is selected, then the respective page is shown immediately.

Fig. 11.7: Online help for TON

11. Library ManagerB&R Automation StudioTM

Page 11.14Training ASPROG

Additionally, B&R provides customers the possibility to view an example program
for inserting the respective component. This is done as follows.

� Search for the component in the online help using the Index tab
(see Fig. 11.7)

� Now the program example can be selected in the desired programming
language by pressing the Enter key

Fig. 11.8: Select programming language

The example shown can then be inserted into the project using copy and paste. The
help can be printed at any time.

11. Library ManagerB&R Automation StudioTM

Page 11.15Training ASPROG

4 USER LIBRARIES

4.1 Creating a Library

LibMan makes it possible for the user to create libraries, in addition to the existing
B&R libraries.

4.1 Inserting a Library

After opening LibMan, the dialog box can be opened using menu item Insert:
Library, or by clicking on the respective symbol. After activating “New Library”,
the name of the new library can be entered in the input field. It must be a name that
was not yet used for any other purpose in the entire project. If a name has already
been used, it will not be accepted.

The programming language to be used to create the components in the new library
also has to be selected. You have to select if you want to use ANSI C or one of the
IEC languages, including B&R Automation Basic to program the components.

Fig. 11.9: Insert Library dialog box

11. Library ManagerB&R Automation StudioTM

Page 11.16Training ASPROG

4.1.2 Library Properties

Properties for a library can be reached using menu item Edit: Properties. The
desired library must be selected on the left side. For source libraries, the dialog box
is used to enter and change these properties. For binary libraries, it is only used to
display the properties.

If the source code is available in the project, the parameters can be changed.
Otherwise the current settings are displayed.

Only the “General” properties are to be set for IEC libraries. For libraries written in
ANSI-C, this dialog box contains further registers which will be described later.

Fig. 11.10: Inserted library

Description:
A short description of the library
should be entered here.

Header File:
Name of the *.h file created for a
library. Preset to the name of the
library for a new library.

Version:
Version number

Target Platform:
Target platform for which the
library was or should be created.

Fig. 11.11: Library Properties dialog box

11. Library ManagerB&R Automation StudioTM

Page 11.17Training ASPROG

4.1.3 Library Parameters

The parameters can be seen when the desired library is selected on the left side of
LibMan.

Fig. 11.12: Library parameters

� Data Type
Here, user data types belonging to the library can be added by clicking on the
symbol or using the <Insert> key. However, they must be created first using
the menu item Open: Data Types so that they can be selected. If a variable
is declared as a structure in a library component, this user data type is
automatically added.

� Constants
The constants needed for the library are shown here. Additional constants
can be added by clicking on the symbol or using the <Insert> key.

� Additional Dependencies
When adding a library that other libraries have declared as dependent this
will automatically be inserted in the project. When using B&R standard
functions, the libraries are automatically added as a dependency. However,
only the system module e.g.: standard.br for the library will be copied to the
software tree of the project desktop here.

11. Library ManagerB&R Automation StudioTM

Page 11.18Training ASPROG

4.2 Creating an IEC Function Block

Before a component can be created, a library must be inserted.

Then select the library that has been created on the left side of LibMan where the
component should be added. A new component can be added to the library using the
right mouse button or the symbol.

Fig. 11.13: Inserting a function / function block

Fig. 11.14: Inserting Sum FBK

11. Library ManagerB&R Automation StudioTM

Page 11.19Training ASPROG

4.3 Function Block Properties

A short “public” description can be added for each component using the menu item
Edit: Properties
.

4.2.1 Selecting the Language

With IEC libraries, the user can select between languages
STL, ST and AB.

The new component is now shown in LibMan.

Fig. 11.14: Component that was inserted

Fig. 11.15: Component properties

11. Library ManagerB&R Automation StudioTM

Page 11.20Training ASPROG

4.4 FBK Interface

The interface for a component is principally the same as the variable declaration in
cyclic program sections. The required variables can be entered here. Unlike a “nor-
mal variable declaration“, there are additional possibilities to declare a variable
here.

� VAR_INPUT
Input paramters

� VAR_OUTPUT
Output parameters

� VAR
Static variables / FBK local

� VAR_DYNAMIC
Dynamic variable in Automation Basic. This variable is only valid in the
FBL and has no affect on outside activities.

� VAR_INPUT_DYNAMIC
Dynamic input/output parameters:
They are assigned the respective pointer by the ADR function. That means
that an address must be connected to this input. Access using the pointer
takes place automatically in the FBK.

Note
If variables are used in the component source code which are not yet entered in the
declaration, the “Auto Declaration Dialog Box” is shown.

11. Library ManagerB&R Automation StudioTM

Page 11.21Training ASPROG

4.5 Source Code for the Function Block

To enter the source code, simply select the desired component on the left side of
LibMan and press the <Enter> key.

The editor will be opened according to the language selected for the component.
The code for the FBK can now be entered.

After closing the editor, the component is saved and is complete.

Now the component can be used in the project just like the standard components.

Fig. 11.16: Selected FBK

Fig. 11.17: Source code for the Sum FBK

11. Library ManagerB&R Automation StudioTM

Page 11.22Training ASPROG

� Using the FBK in a LAD task

FBK Name: PRGHeating
Task Name: test_fbk

Resource: ?

Project: libman.pgp

 Fig. 11.18: FBK Interface

4.5.1 Heating Example I

The temperature of a room should be monitored.

If the actual temperature “temp_act” is higher than the set temperature “temp_set”,
then the variable “cooling” should be set to one.

If the actual temperature “temp_act” is lower than the set temperature “temp_set”,
then the variable “heating” should be set to one.

Heating control should be integrated in a FBK which is then called in a LAD task.

� Creating the heating control FBK in B&R AB

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.23Training ASPROG

4.5.2 Fill Level Monitoring

Procedure:
A container should be filled with a liquid. The fill level constantly changes when
adding the liquid, therefore make sure that the valve is only closed when the fill
level is over the switch off level for at least 10 seconds.

Diagram:

� Handle monitoring in a FBK

� Test the FBK in B&R AB

FBK Name: PRGSwimmer
Task Name: ?

Project: libman.pgp

Full

Empty

Valve

Fill sensor = 1

Fill sensor = 0

Schulung / Training

11. Library ManagerB&R Automation StudioTM

Page 11.24Training ASPROG

4.6 Creating Online Help

It is relatively easy to create online help for user libraries.

An HTML editor and the program “Html Help Workshop” which can be download
free of charge from Microsoft via the Internet

http://msdn.microsoft.com/library/tools/htmlhelp/chm/hh1start.htm

.

It is even easier to create help with tools like “Robohelp” or “FAR”, but they are
not free of charge.

4.7 Creating a C Library

The procedure is almost the same as with IEC libraries. The main difference is that
the source code for the component is not added directly by double clicking on the
function, instead must be added as source files.

Detailed information can be found in the online help. There is a tutorial that
explains the exact procedure.

Fig. 11.18: Tutorial for creating a C library

11. Library ManagerB&R Automation StudioTM

Page 11.25Training ASPROG

The library directory is divided into five subdirectories:

Help: Online help, if available

i386: Library files for Intel platform (*.br, *.h, *.a File)

m68k: Library files for Motorola platform (*.br, *.h, *.a File)

Source: Source files for the component are stored here. If
these source files are deleted, the component can no longer be
edited.

Temp: Temporary directory

Fig. 11.19: Library directory structure

4.8 Reusing Libraries

To reuse a library, the following steps must be carried out.

� Copy the library from the current project

C:\Projekte\ASProg.pgp\Library\ “Name of the library“

This library directory, which exists in all projects, contains all libraries
included in the project.

11. Library ManagerB&R Automation StudioTM

Page 11.26Training ASPROG

� Inserting the library in a standard directory
In order to be able to manage libraries correctly, it makes sense to create a
separate directory in the AS path.

e.g.: C:\BrAutomation\AS\Library\User\ “Name of the library”

� Add library directory to LibMan
In the new project, the path for the user libraries has to be entered. Now the
library can be inserted like standard libraries.

Fig. 11.20: Path settings in LibMan

11. Library ManagerB&R Automation StudioTM

Page 11.27Training ASPROG

5 PG2000 LIBRARIES

There are some differences between Automation Studio and PG2000, therefore
instructions are available to simplify conversion from PG2000 to Automation Stu-
dio. Automation Studio provides a function which allows these libraries to be
imported.

5.1 PG2000 Porting Guide

This tool can be found in the online help for LibMan. The Porting Guide provides
detailed instructions for converting PG2000 libraries.

Fig. 11.21: PG2000 Porting Guide

12. ANSI CB&R Automation StudioTM

Page 12.1Training ASPROG

ANSI C

1 OVERVIEW... 2

2 ANSI C ... 3

2.1 Development History ... 3

2.2 Definition of Terms .. 4

2.3 Command Groups .. 6

3 STRUCTURE OF C PROGRAMS .. 9

3.1 B&R Expansions .. 10

3.2 Creating a C Task ... 14

3.3 Variable Declaration ... 17

3.4 Data Types .. 20

3.5 Line Coverage .. 22

3.6 Functions .. 24

3.7 Debugger .. 30

3.8 Using Arguments with Complex Data Types 33

4 USING B&R LIBRARIES .. 36

4.1 General Information ... 36

4.2 Example .. 37

5 COMPILER INFO ... 41

5.1 File Types ... 41

5.2 Compile Procedure ... 42

5.3 GNU C Compiler ... 44

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.2Training ASPROG

1 OVERVIEW

B&R offers the right programming language for every application and for every
programmers preference. This includes:

� Ladder Diagram (LAD)

� Instruction List (IL)

� Structured Text (ST)

� Sequential Function Chart (SFC)

� B&R Automation Basic (AB)

� ANSI C

LAD Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

IL Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

ST This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

SFC A sequential language that was developed to separate a task into clear units. SFC is
well suited for processes where states change in steps, for example: automatic
carwash.

AB This B&R high level language is a clear and powerful programming language for
automation systems of the newest generation. Simple standard constructs guarantee
fast and efficient programming. Previously PL2000

ANSI C This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast
and efficient application programming.

12. ANSI CB&R Automation StudioTM

Page 12.3Training ASPROG

2 ANSI C

2.1 Development History

C is a programming language which was developed in the 70s together with UNIX
at AT&T Bell Laboratories by Dennis M. Ritchie. It uses and expands on the
language “B” which was developed by Ken Thompson. This is how “C” came to be.
Since then, this programming language has continued its course of success in all
areas of programming.

In 1978, Brian Kerninghan and Dennis Ritchie wrote the “K&R White Book”
“The C Programming Language”. Kerninghan wrote the main text and Ritchie wrote
the technical sections.

Because it is used in many different areas, it became necessary to standardize the
language. Tis was done by the American National Standards Institute ANSI in
1983. Then is became possible to implement the language on different platforms.

2.1.1 Why use a high level language?

Using language constructs eases programming of control tasks and makes a
program created with this language much easier to read. Programs can be achieve
much higher performance than with normal PLC programming languages.

12. ANSI CB&R Automation StudioTM

Page 12.4Training ASPROG

2.2 Definition of Terms

High Level Language
Common term for programming languages which allow problem oriented
formulation and function independent of the computer type where they are running.
e.g.: C, PASCAL, ST, AB

C Structured Programming Language.

ANSI Abbreviation for: American National Standards Institute.

ANSI C Standardized “C”

Source Code
Consists of programming commands created by the programmer with a text editor
and saved in a file. This file contains the source code. This code is compiled and
can then be transfered and executed on controllers, PCs etc.

Source Short form of source code.

File / Program / Document
The basic memory unit on a PC. Documents and programs are files. Different data
types are possibly assigned different symbols.

Folder
A folder can contain files and other folders. To make things clearer, place your
work in folders just like you would in your office or at home. Your directories are
shown as folders.

Directory / Path
In text oriented operating systems, directory names or paths are used to store files
instead of graphic symbols (folders).

Directory Tree
In order to display directories in a clear manner, programs (e.g.: Windows Explorer)
show directories as tree structures.

12. ANSI CB&R Automation StudioTM

Page 12.5Training ASPROG

Editor The C editor is a text editor for C source code. The programmer is shown possible
entry errors when programming using syntax coloring. This signiicantly reduces
programming times because syntactic programming errors are ruled out.

CommandsEach command in C must be terminated with a semicolon.

e.g.: res = a + b;

Comment
Meaningful comments placed in the program make orientation easier for longer
source codes. Additionally, the code is clear and easy to follow, even after a long
period of time.

Comments are terminated using “/*” and “*/”.

Comments can be written over several lines.

e.g.: /* This is a comment.
And this is the second line. */

12. ANSI CB&R Automation StudioTM

Page 12.6Training ASPROG

2.3 Command Groups

An overview of the operator types:

� Primary operators
e.g.: Brackets: a = (b+c) * d;

� Unary operators
e.g.: Negation: a = !b;

� Arithmetic operators

� Shift operators

� Compare operators

� Bit oriented operators

� Logic operators

� Ternary operators
Operator for conditional expressions

� Assignment operators

� Comma operator

12. ANSI CB&R Automation StudioTM

Page 12.7Training ASPROG

Instruction Description Example

() Brackets value = a * b - c; or

value = a * (b - c);

Note
In this section, we will only explain the operators that are meaningful for
getting started in C with B&R controllers.

Primary operators

Unary operators

Arithmetic operators

Instruction Description Example

! Unary Negation a = !b;

Instruction Description Example

= Assignment a = b;

+ Addition a = b + c;

- Subtraction a = b - c;

* Multiplication a = b * c;

/ Division a = b / c;

% Modulo (remainder of
division)

a = b % c;

12. ANSI CB&R Automation StudioTM

Page 12.8Training ASPROG

Compare operators

Bit oriented operators

Logic operators

Instruction Description Example

< less than if (a < b)

> greater than if (a > b)

<= less than or equal
to

if (a <= b)

>= greater than or
equal to

if (a >= b)

== equal to if (a == b)

!= not equal to if (a != b)

Instruction Description Example

& And - bit mode a = b & c;

| Or - bit mode a = b | c;

^ Or - exclusive a = b ^ c;

Instruction Description Example

&& And if (a > 0) && (b > 0)

|| Or if (a > 0) || (b > 0)

12. ANSI CB&R Automation StudioTM

Page 12.9Training ASPROG

Now we will show the individual possibilities using an example:

The following C code increases a counter variable each time the function with the
name “CyclicFunction(..)” is called, or is set to a start value by calling the function
“Initialization(..)” and is set then to an end value when starting the function
“Terminate(..)”.

INT variable; /* Declaration of the variables */

void Initialization(void)

{
variable = 1; /* Assign start value */

}

void CyclicFunction(void)

{
variable = variable + 1; /* Value increased by 1 */

}

void Terminate(void)

{
variable = 0; /* Reset value */

}

c_task

initialize()

exitroutine()

cyclic part()

c_file.c

c_file_2.c

3 STRUCTURE OF C PROGRAMS

Like any other task, a C task can consist of several functions.

Code blocks are represented in C using curved
brackets.

{ Start code block

} End code block

12. ANSI CB&R Automation StudioTM

Page 12.10Training ASPROG

3.1 B&R Expansions

3.1.1 Include Files

In order to use certain possibilities on the PCC, we will first include the header file:
“plc.h“ which contains definitions for all necessary macros using the following
instruction:

#include <bur\plc.h>

Like all other B&R system header files, the header file “plc.h“ is found in the AS
install directory:

BrAutomation\AS\GnuInst\m68k-elf\include\bur\plc.h

and can be added to the C task by marking the C task name and pressing the
[ENTER] key, or using the main menu item Insert: File. This is not absolutely
necessary, but has the advantage of continually monitoring the header file for
changes.

Fig. 12.1: Directory structure

12. ANSI CB&R Automation StudioTM

Page 12.11Training ASPROG

3.1.2 Analyzing the Entries in the Header File “plc.h”

� Definition of the Variables:

Macro name/

Attribute

Function

_GLOBAL Code for a PCC global variable.

_LOCAL Code for a task local variable.

� Definition of the Functions:

Macro name/

Attribute

Function

_INIT Code for an INIT routine.
Only executed when booting the PCC with a cold start,
warm start, or when transferring a task.

_CYCLIC Code for the function which is called cyclically.
The function name cannot be “main”

_EXIT Code for the EXIT routine.
Called once when deinstalling the task.
Also executed when the task is transferred again.

_NONCYCLIC Code for a function which is executed in the system
idle time. (only for special applications)

12. ANSI CB&R Automation StudioTM

Page 12.12Training ASPROG

Using this macro in our C program results in the following code:

#include “plc.h“ /** B&R-Standard files **/

_GLOBAL INT variable; /** PCC-global variables **/

/** This function is only used when booting the PCC,
or when downloading the task **/

_INIT void Initialization(void)
{

variable = 1; /** Assign start value **/
}

/** This function is executed cyclically **/
_CYCLIC void CyclicFunction(void)
{

variable = variable + 1; /** Value increased by 1 **/
}

/** This function is only called when deinstalling
the task **/

_EXIT void Terminate(void)
{

variable = 0; /** Reset value **/
}

12. ANSI CB&R Automation StudioTM

Page 12.13Training ASPROG

Example
Create a new project and test the previous example using line coverage.

Project Name: c_proj

Task Name: c_task1
Resource: C#3

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.14Training ASPROG

3.2 Creating a C Task

C tasks are inserted in the project just like LAD tasks.

This type of task can consist of several files, therefore these source files are added
under the task symbol using “Insert File”.

Fig. 12.3: C task, Insert File dialog box

Fig. 12.2: C Task dialog box

12. ANSI CB&R Automation StudioTM

Page 12.15Training ASPROG

In order to manage the project in a clearer manner, all source files are grouped
together in a “Source” directory. A new folder can be created by simply clicking on
the marked symbol.

Then the file name is entered.

Note
The extension “.c” also has to be entered !

Fig. 12.5: Enter file name

Fig. 12.4: Create new folder

12. ANSI CB&R Automation StudioTM

Page 12.16Training ASPROG

Double-clicking on the file opens the editor.

Fig. 12.6: Opening the C editor

12. ANSI CB&R Automation StudioTM

Page 12.17Training ASPROG

3.3 Variable Declaration

In addition to the macros for “_GLOBAL” or “_LOCAL” shown above, the variable
declaration in the C file also provides the possibility to use C global or C local
variables.

The difference between PCC PVs and C variables is the target memory.
PCC PVs which are entered in the AS database,
Main menu itemOpen: Declaration, are stored in Dual Ported Ram.
C variables are defined in User RAM (freely available).

DPR PVs: _GLOBAL / _LOCAL C Variables: C global / C local

The variable values are remanent C variable are initialized with 0 when
switching on the controller.

The max. size of an analog PV is limited
to approx. 30kByte.

The size of a C variable only depends on the
memory available.

_GLOBAL PVs can be assigned to the
hardware.

C variables cannot be assigned to the
hardware.

_GLOBAL, _LOCAL PVs can be
displayed (e.g.: using PVI, NET2000,
etc.).

C variables cannot be referenced via PVI,
NET2000, etc. That means: They are not visible
in the WATCH window.

Initialization of PVs in the variable
declaration or in the INIT routine.

Initialization possible directly during definition
in the C file (e.g. : int variable = 123;).

No multidimensional arrays (matrix). Multidimensional arrays are allowed

Structures have a max. of 16 layers. No limits for structures.

Enumerations data types are not
available.

Enumeration data types are supported.

When using pointers, only the address is
entered as UDINT in variables /
structures.

In C, pointers can be used as normal.1

1 With the exception of PCC variables declared with _LOCAL (first reference is a dynamic variable).

12. ANSI CB&R Automation StudioTM

Page 12.18Training ASPROG

3.3.1 Scope of the Variables

� A PV defined with _LOCAL is local in the task and global for the task files.

� A PV defined with _GLOBAL is PCC global and also global for the task
files.

� A variable declared as C global is global for all C files and its
scope is limited within a task.

� A local C variable is only valid in the function where it was defined.

In order to use a global C variable in a tasks in several files, it must be declared in a
file without the attribute “external”. In this way, the memory for this variable is
reserved. In all other files where this variable is accessed, it have the attribute
”external”. The attribute external indicates to the compiler that the variable is
already declared in another file.

Task_II:

Task_I:

C-File1:

_GLOBAL int pcc_global;
int c_global;

void function1(void)
{

int c_local;
...

}

C-File2:

_LOCAL int pcc_local
int c_globalextern

C-File3:

_GLOBAL int pcc_global;
...

12. ANSI CB&R Automation StudioTM

Page 12.19Training ASPROG

IMPORTANT

� For each PCC task, one function must have the attribute ”CYCLIC”. But
only one function can have this attribute.

� For each PCC task, a function can have the attributes “_INIT”, “_EXIT” if
required.

� DPR PVs have the attribute “_GLOBAL” or “_LOCAL”. In this way, these
variables are managed by AS in the project variable declaration
Open: Declaration.

� If one or more DPR PVs are no longer used in the programs, they remain in
the project and reserve memory in the DPR until a “Build All” Project:
BuildAll.

� DPR PVs are referenced using a max. of 32 characters. C variables can be
longer.

� For the variable types, make sure that C does not have any rules regarding bit
length for an integer variable (int). Therefore this length depends on the
processor and is 32 bit for the B&R PCC.

In order to work with IEC1131 data types in C, the user is provided the B&R header
file named: “plctypes.h”.

Directory for plctypes.h:

BrAutomation\AS\Gnuinst\m68k-elf\include\bur\plctypes.h

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.20Training ASPROG

3.4 Data Types

Various data types are defined in IEC61131-3. Some of these data types do not have
a corresponding type in the ANSI C standard. Therefore B&R Automation Studio
has declared some data types in the file “plctypes.h” so that all
IEC1131 data types can be used in C.

Resolution IEC1131-3 B&R C ANSI C
1 bit BOOL plcbit1 unsigned char
8 bit with sign SINT signed char signed char
8 bit without sign USINT unsigned char unsigned char
16 bit with sign INT short short
16 bit without sign UINT unsigned short unsigned short
32 bit with sign DINT long long
32 bit without sign UDINT unsigned long unsigned long
32 bit time difference in milliseconds TIME plctime1 signed long
32 bit date in seconds since 19702 DT

DATE_AND_TIME
plcdt1 unsigned long

Zero terminated string with length x3 STRING(x) plcstring1 [x+1] char [x+1]
Floating point representation 32 bit REAL float float

IMPORTANT
In order for the compiler to view plcbit variables as unsigned char, the
user must make sure that only 0 or 1 is assigned.

1 Defined by B&R in plc.h
2 Unix standard format for date entries
3 In IEC1131-3, the final 0 byte is not counted, it is in ANSI C

12. ANSI CB&R Automation StudioTM

Page 12.21Training ASPROG

Example
Create a solution to the following task in C.

Check “TempAct”. If “TempAct” is smaller than “TempSet”, then bit variable
„heating“ should be set to 1. Otherwise “heating” should be cleared.

Project Name: c_proj

Task Name: c_task2
Resource: C#3

Name Type Scope Attribute Value Description
TempAct INT global IP5.0.5.1 ------------- Analog IN, Chan. 1
TempSet INT global IP5.0.5.2 ------------- Analog IN, Chan. 2
heating BOOL global QP5.0.4.11 * remnant Dig. OUT, Chan. 11

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.22Training ASPROG

3.5 Line Coverage

 View: Monitor or <Ctrl><M>

AS is first switched to Monitor Mode.

 Object: Start Line Coverage

Start -> by clicking on the “green” lamp symbol

With Line Coverage, the values are taken from the controller and shown in the
respective program context.

The arrows on the left indicate that a line is being processed. Figure 11.7 the line
„heating = 0“ is not currently being processed.

If the mouse cursor is placed over a variable, then a
„Tool Tip“ is opened which shows the current value of the variable on the
controller.

Fig. 12.7: Line Coverage

12. ANSI CB&R Automation StudioTM

Page 12.23Training ASPROG

Example
Test “c_task2” using Line Coverage.

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.24Training ASPROG

3.6 Functions

3.6.1 General Information

Sub-programs which are referred to as functions are a major part of C. They are
used to structure the program in a clearer manner. These sub-programs are very
similar to function blocks, but can only be used by C tasks.

3.6.2 Structure of a Function

Return value Function name Arguments

e.g.:

void CyclicFunction(void)

{
...

}

� Returned value
Provides the function the possibility to return a value to the function where it
was called. In our example, we don’t have a return value, therefore void
(void = empty).

� Functions name
Name used to call the function in the program.

� Arguments
Values given to the function. In our example, no values are provided,
therefore: void

12. ANSI CB&R Automation StudioTM

Page 12.25Training ASPROG

3.6.3 Providing an Arguments as a Value

Program sections which are often reused should be placed in sub-programs
(=functions). The arguments provided are processed in these functions. If
necessary, the result can be given back to the function that made the call as a return
value.

For example, the operating system provides the Init function the current boot
information.

#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files */

_LOCAL DINT Boot information;

/* This function is only used when booting the PCC,
 or when downloading the task */

_INIT void Initialization (DINT PCC_info)
{

Boot information = PCC_info;

}

Argument: (DINT PCC_info)

The argument is saved in a local C variable in the function and can only be used by
this function.

To provide several arguments for a function, they must be separated by commas.

12. ANSI CB&R Automation StudioTM

Page 12.26Training ASPROG

3.6.4 File Local Function

We want to add two numbers with a function and save the result in a
„_LOCAL“ variable.

#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files */

_LOCAL DINT Boot information;
_LOCAL DINT Result;

_LOCAL INT Value1,
Value2;

/* Declaration of the function prototypes */
DINT Add(INT Value1, INT Value2);

/* This function is only used when booting the PCC,

 or when downloading the task */

_INIT void Initialization (DINT PCC_info)
{

Boot information = PCC_info;

}

_CYCLIC void Cyclic(void)
{

/* Call the function */
Result = Add(Value1, Value2);

}

/*————————————————————————————*/

DINT Add(INT Value1, INT Value2)
{

DINT Res; /* Definition of a local C variable */

Res = Value1 + Value2; /* Calculating the sum */

return(Res); /* Return the result to the
functionthat made the call */

}

12. ANSI CB&R Automation StudioTM

Page 12.27Training ASPROG

Example
Create a local function, which multiplies 3 values. Test the
function in a task.

Task Name: calc
Resource: C#1

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.28Training ASPROG

3.6.5 Task Global Function

All functions in a task can access this sub-program (File 2).

Task_1:

C-File2:

C-File1:

#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files */

_LOCAL DINT Result;

_LOCAL INT Value1,
Value2;

/* Declaration of the function prototypes */
external DINT Add(INT Value1, INT Value2);

#include "plc.h" /* B&R Standard files */
#include "plctypes.h" /* B&R Standard files */

DINT Add(INT Value1, INT Value2)
{
DINT Res; /* Definition of a C local variable */

Res = Value1 + Value2; /* Calculation */

return(Res); /* Return value */
}

_CYCLIC void CYCLIC(void)
{

/* Call the function */
Result = Add(Value1, Value2);

}

In C File1, sub-program Add()) is called in function Cyclic().
The function code is contained in C File2. Therefore the compiler in C File1
must be informed that the code for Add() is external.

12. ANSI CB&R Automation StudioTM

Page 12.29Training ASPROG

Example
Change task “calc” so that the addition is coded in a separate
file.

Task Name: calc
Resource: C#1

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.30Training ASPROG

3.7 Debugger

3.7.1 Set / Clear Stop Point

With this function, break points are set on the controller which stop the system.

The Debug output window on the lower edge of the AS window shows Debugger
information. The toolbar for the Debugger is opened.

The program can be tested in single step mode with the “single step” or

“procedure step“ function.

“Next” causes processing to continue to the next stop point or cycle.

3.7.2 Single Step

All instruction lines are executed. If functions are called, they are executed if the
source code is available.

3.7.3 Procedure Step

Functions are completely executed. Then the program counter Stopps after the
function call.

Fig. 12.8: C Task Debugger

12. ANSI CB&R Automation StudioTM

Page 12.31Training ASPROG

3.7.4 Debugger: Watch Fenster

This window is opened if the program on the controller gets to a breakpoint. If a
variable in the source window is marked and pulled into the Watch window (Drag &
Drop), then the value of the variable, the array or the structure is shown.

Fig. 12.9: C Task Debugger Watch Window

12. ANSI CB&R Automation StudioTM

Page 12.32Training ASPROG

Example
Test the Debugger using an example.

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.33Training ASPROG

3.8 Using Arguments with Complex Data Types

3.8.1 Application Example 1

Creating a slave pointer. (Slave pointer => A function that determines the
maximum using a current value).

Note
If a function should return more than one value to the function that made the call, or
if a function should work directly with the memory for the function that made the
call, this cannot take place using the function return().

#include <bur\plc.h> /** B&R Standard files **/
#include <bur\plctypes.h> /** B&R Standard files **/

/**--**/

/** Constant definition **/
/**--**/
#define TRUE 1
#define FALSE 0

/**--**/
/** TYPE DEFINITION FOR MEASSTRUCTURE
**/
/** init: Used to set max_value to 0. **/
/** current_value: Current value to be evaluated. **/
/** max_value: Maximum value of current_value **/

struct MEASSTRUCTURE {
BOOL init;
INT current_value;
INT max_value;
};

/**---**/
/** VARIABLE DECLARATION **/
/**---**/

/** Variable given to the slave pointer **/
_LOCAL struct MEASSTRUCTURE fillstatus;

/**---**/
/** FUNCTION PROTOTYPES **/

/**---**/

/** The function slavepointer() does not make a copy of the
 variable given, instead works directly with the variable for
 the function that made the call, therefore a star must be

inserted before
 “data” in the function header **/

void slavepointer(struct MEASSTRUCTURE *data);

12. ANSI CB&R Automation StudioTM

Page 12.34Training ASPROG

/**---**/
/** INITIALIZATION OF THE TASKS (INIT-SP) **/
/**---**/

_INIT void initup(DINT OS_info)
{

fillstatus.init = 1;
slavepointer(&fillstatus);

}

/**---**/
/** CYCLIC SECTION OF TASK **/
/**---**/
_CYCLIC void cyclic_func(void)
{

/** Maximum evaluation using slave pointer **/

slavepointer(&fillstatus);
}

/**---**/
/** If the current value is > the maximum value,
 the current value is set to the maximum value. **/

/**---**/
/** void slavepointer(struct MEASSTRUCTURE *data) **/
/**---**/

/** The function slavepointer() does not make a copy of the

 variable given, instead works directly with the variable for
 the function that made the call, therefore a star must be
 inserted before “data” in the function header **/

void slavepointer(struct MEASSTRUCTURE *data)
{

if (data->init == TRUE)
{

data->max_value = 0;
data->init = 0;

} /** end if (data->init .. **/

if(data->current_value > data->max_value)
{

data->max_value = data->current_value;
} /** end if(data->current_value > data->max_value) **/

/** return without return value **/

}

Note
Detailed information concerning working with pointers can be found in the
respective C literature.

12. ANSI CB&R Automation StudioTM

Page 12.35Training ASPROG

#include <bur\plc.h>
#include <bur\plctypes.h>

/** Constant definition **/

#define TRUE 1
#define FALSE 0

#define END_OF_TEXT 0 /** Strings are zero terminated **/

/** VARIABLE DECLARATION **/

_LOCAL STRING text[20];

_LOCAL INT length;

/** FUNCTION PROTOTYPES **/

INT string_len(STRING string[]);

/** INITIALIZATION OF THE TASKS (INIT-SP) **/

_INIT void init(void)

{
text[0]= END_OF_TEXT;

}

/** CYCLIC SECTION OF TASK **/

_CYCLIC void cyclic_func(void)
{

length = string_len(&(text[0]));
}

/** C strings are zero terminated, therefore the loop searches for

 the first 0. Then the length is known. **/

INT string_len(STRING string[])
{

INT len = 0;

while (string[len] != END_OF_TEXT)
{

len++;
}
return(len);

}

3.8.2 Application Example 2

Determine the length of a strings in a function.

12. ANSI CB&R Automation StudioTM

Page 12.36Training ASPROG

4 USING B&R LIBRARIES

4.1 General Information

Libraries or standard functions are used to efficiently create programs and offer a
simple, complete solution for often required functions.

The following components are needed to use B&R standard functions in a C task:

� Library Header File e.g.: “standard.h”
Contains the variable type declaration and the function type declaration.

� Library Archive File e.g.: „standard.a“
Contains the link information for the start address in the library code
of the system files

The files for various libraries are found directly under the library path for the
project. Libraries imported in the project are copied by LibMan directly into this
directory.

12. ANSI CB&R Automation StudioTM

Page 12.37Training ASPROG

4.2 Example

4.2.1 Inserting the Library in the Project

A standard function from the STANDARD library should be used,
and the following settings must be made in the project.

� Insert the desired library in the Library Manager. Inserting the library
according to the set operating system version copies the necessary files to the
path:

e.g.: C:\projects\prj_name.pgp\Library

� Inserting the library header files and the archive files

IMPORTANT
The library archive file must be placed in the tree structure after the C file that
accesses a corresponding library function.

Fig. 12.12: Insert header file and archive file

Fig. 12.13: Complete C task tree

12. ANSI CB&R Automation StudioTM

Page 12.38Training ASPROG

4.2.2 Inserting the Header File

Only the library header file: “standard.h” has to be included in the C code. The
library archive file “libstandard.a” is only added to the task using Insert: File.

If e.g.: the function TON(..), a turn on delay function from the standard library,
should be used, this results in the following program:

#include <bur\plc.h>

#include <bur\plctypes.h>
#include <standard.h> /** Library Header File **/

_LOCAL TON_10mstyp ton_para; /** TON parameter variable **/

_GLOBAL BOOL gDiStart, /** start TimerOnDelay **/
gDoRelay; /** Output **/

_CYCLIC void use_standard_func(void)
{

ton_para.PT = 100; /** set preset-time to lsec. **/
ton_para.IN = gDiStart;

TON_10ms(&ton_para);

gDoRelay = ton_para.Q; /** set output **/
}

12. ANSI CB&R Automation StudioTM

Page 12.39Training ASPROG

Example
Use the B&R standard library and the function block TOF

Schulung / Training

12. ANSI CB&R Automation StudioTM

Page 12.40Training ASPROG

4.2.3 Using C Standard Libraries

This example shows the use of the mathematics library.
Monitor the progress of “x” and “y” with the Tracer.

#include <bur\plc.h>
#include <bur\plctypes.h>
#include “math.h“

/**---**/
/** Constant definition **/
/**---**/

#define TRUE 1

#define FALSE 0

#define SCANTIME 0.01 /** Task class cycle time **/

/**---**/

/** VARIABLE DECLARATION **/
/**---**/

_LOCAL REAL x, y, freq, t;

/**---**/
/** INITIALIZATION OF THE TASK (INIT-SP) **/
/**---**/

_INIT void init(void)

{
freq = 1.0;

}

/**---**/

/** CYCLIC SECTION OF THE TASK **/
/**---**/

_CYCLIC void cyclic_func(void)
{

t = t + SCANTIME;

x = sin(M_TWOPI * freq * t);
y = cos(M_TWOPI * freq * t);

}

12. ANSI CB&R Automation StudioTM

Page 12.41Training ASPROG

5 COMPILER INFO

5.1 File Types

*.c C Source Files
Definition of the variables. Implementation of the functions

*.h C Header Files
Prototypes of functions and declaration of variables that should be used for
several C source codes. These files are included in the C source code using the
preprocessor instruction #include.

*.s Assembler source code text.

*.o Object Files:
Compiled source file.

*.a Library Files
Archive made up of several compiled source files. Often simply called library.
Take note that archive files always have to be included at the end of the task.

12. ANSI CB&R Automation StudioTM

Page 12.42Training ASPROG

5.2 Compile Procedure

� Preprocessor
The preprocessor includes the header files in the source code and replaces
the macros. Macros are special instructions for the preprocessor. The
#include instruction is also a preprocessor instruction.

� Parser
The parser is a program element which divides the source code into
individual sections, so that it can be processed by other areas of the
compiler. The parser is also often used to check syntax. That means, the
amount and type of parameters given to the functions.

� Compiler
The compiler is a program that converts the source code to an assembler file
(*.s). At the beginning of the compile procedure, the source code is checked
by the parser.

archive.aobject.osource.c header.h asm.s

Preprocessor + Compiler

Assembler

Linker

C Backend + Taskbuilder

task.br

Project Database

source.s

source.o, asm.o

task.out

Fig. 12.14: Compile procedure

12. ANSI CB&R Automation StudioTM

Page 12.43Training ASPROG

� Assembler
The assembler creates machine code with linker information from the
assembler code. The Object File (*.o). For most systems, this file must be
processed further e.g. to group several object files or to correctly call
functions contained in libraries. This is done by the Linker.

� Linker
The Linker creates a single code file from the various object files and
libraries, the “task.out” file.

� Backend, Taskbuilder:
The output file from the Linker can be converted to a “task.br” File with AS
database information and some hardware specific modifications. This file
can then be processed by the PCC.

12. ANSI CB&R Automation StudioTM

Page 12.44Training ASPROG

5.3 GNU C Compiler

We use a ported GNU C compiler as C program compiler. GNU originates from the
UNIX world and has proven to be a reliable code generator that is used worldwide.

To be able to use the many possibilities offered by this compiler, documentation is
provided in universal HTML format in the directory
BrAutomation\AS\Gnudoc\index.htm.

Default values for general use are defined in AS. The user only has to make additio-
nal settings if required.

Changes can be made by positioning the marking cursor on
the task and selecting the main menu item Edit: Properties. The properties menu
can also be reached using the right mouse button when the task is selected.

Compiler Option:

� -O0 Code optimization off (useful for Debugging)

� -Dmacro Define Macro (conditional code generation)

Fig. 12.15: C task settings

13. Seminar ReviewB&R Automation StudioTM

Page 13.1Training ASPROG

SEMINAR REVIEW

1 SEMINAR REVIEW .. 2

2 SEMINAR OVERVIEW .. 3

3 SALES LOCATIONS .. 4

Schulung / Training

13. Seminar ReviewB&R Automation StudioTM

Page 13.2Training ASPROG

1 SEMINAR REVIEW

� B&R Automation Studio

� B&R Automation Runtime

� B&R Automation Target

� B&R Automation Net

� Project Guidelines

� Sequential Function Chart

� AB Automation Basic

� Data Handling

� TPU Code Linker

� Library Manager Introduction

� ANSI C

13. Seminar ReviewB&R Automation StudioTM

Page 13.3Training ASPROG

2 SEMINAR OVERVIEW

B&R MOTION SYSTEMS

B&R AUTOMATION SOFTWARE

B&R CONTROL SYSTEMS

B&R PANEL SYSTEMS

13. Seminar ReviewB&R Automation StudioTM

Page 13.4Training ASPROG

3 SALES LOCATIONS

The most current addresses and product information can be found at:

HTTP://WWW.BR-AUTOMATION.COM

	STNASPROG-E
	SEMINAR START
	1 INTRODUCTION
	2 SEMINAR OVERVIEW
	3 SCHEDULE

	B&R AUTOMATION STUDIO
	1 OVERVIEW
	2 B&R AUTOMATION STUDIO
	2.1 One Tool Many Targets

	3 AS DIRECTORY STRUCTURE
	4 PROJECT DIRECTORY STRUCTURE
	5 AS PROJECT
	5.1 Opening Projects
	5.2 LAD Task
	5.3 C Task
	5.4 Variable Declaration
	5.5 Transferring Projects

	6. PROJECT SETTINGS
	6.1 IEC Editor
	6.2 Ladder Printer Settings
	6.3 C Compiler
	6.4 Build and Transfer
	6.5 Motion
	6.6 Library Manager
	6.7 Naming Conventions

	B&R AUTOMATION RUNTIME
	1 OVERVIEW
	2 AUTOMATION RUNTIME
	3 INDIVIDUAL SYSTEM CONFIGURATIONS
	3.1 Memory Configuration
	3.2 Software Object Configuration
	3.3 System Configuration
	3.4 Communication Configuration
	3.5 Interfaces
	3.6 Timing Configuration
	3.7 Resource Configuration

	4 ERROR LOGBOOK
	5 ONLINE INFORMATION
	5.1 System Information
	5.2 CPU Memory Information
	5.3 Real-time Clock

	6 I/O HANDLING AND TIMING
	6.1 I/O Image Handling

	7 SYSTEM STRENGTHS
	7.1 Strengths of the B&R Multitasking System
	7.2 Strengths of the B&R I/O System

	B&R AUTOMATION TARGETS
	1 OVERVIEW
	2 B&R AUTOMATION TARGET
	3 B&R AUTOMATION TARGET 2003
	3.1 Main Unit
	3.2 Expansion
	3.3 CAN I/O Projects

	4 B&R AUTOMATION TARGET 2005
	4.1 Main Unit
	4.2 Expansion
	4.3 RIO Projects

	5 B&R AUTOMATION TARGET 2010
	5.1 Main Unit
	5.2 Expansion

	6 B&R AUTOMATION TARGET LOGIC SCANNER
	6.1 Main Unit
	6.2 Expansion

	7 B&R AUTOMATION TARGET IPC2XXX
	7.1 Main Unit
	7.2 Expansion

	8 B&R AUTOMATION TARGET IPC5XXX
	8.1 Main Unit
	8.2 Expansion

	9 B&R2000 OVERVIEW

	B&R AUTOMATION NET
	1 OVERVIEW
	2 B&R AUTOMATION NET
	3 COMMUNICATION PRINCIPLES
	4 ACCESS TO B&R AUTOMATION NET
	4.1 B&R Automation Net - PVI
	4.2 B&R Automation Net - Routing
	4.3 B&R Automation Net - INA Client FBKs

	PROJECT GUIDELINES I
	1 OVERVIEW
	2 PROJECT CREATION
	3 PROGRAMMING CONVENTIONS
	3.1 Identifier
	3.2 Data Types
	3.3 Directory Structure
	3.4 Software Module Names
	3.5 Task Names
	3.6 Data Module Names
	3.7 Variable Names
	3.8 Constant Names
	3.9 Alias Process Variables
	3.10 Assigning Revision Numbers

	SEQUENTIAL FUNCTION CHART
	1 OVERVIEW
	2 SFC SYNTAX
	2.1 Steps
	2.2 Actions
	2.3 Transitions
	2.4 Jumps
	2.5 Branches
	2.6 IEC Steps

	3 PLANNING WITH SFC
	3.1 Planning on Paper
	3.2 SFC Tools
	3.3 SFC Application

	AUTOMATION BASIC
	1 OVERVIEW
	2 SYNTAX
	2.1 Command Groups
	2.2 Operator Priorities
	2.3 Logical Links
	2.4 Arithmetic Operations
	2.5 Data Type Conversion
	2.6 Logical Comparison Expressions
	2.7 Decisions
	2.8 Case Statements
	2.9 Loops
	2.10 Select Statements
	2.11 Working with Function Blocks

	DATA HANDLING
	1. OVERVIEW
	2. PROCESS VARIABLES
	2.1 General Information
	2.2 Data
	2.3 Basic Data Types
	2.4 User Data Types
	2.5 Function Block Data Types
	2.6 Dynamic Process Variables

	3. DATA MODULES
	3.1 General Information
	3.2 What is a data module
	3.3 What advantages does a data module offer
	3.4 Creating a Data Module in AutomationStudio
	3.5 Reading a Data Module from the Application
	3.6 Creating and Writing to a Data Module from the Application
	3.7 Autonomous Data Module Memory

	4. MEMORY MANAGEMENT
	4.1 General Information
	4.2 Memory Access
	4.3 Location
	4.4 Memory Organization

	TIMING PROCESSING UNIT
	1 OVERVIEW
	2 TIMING PROCESSING UNIT
	2.1 What is a Timing Processing Unit
	2.2 Block Diagram of a Processor with TPU
	2.3 Functions

	3 TPU MODULES
	3.1 B&R AutomationTarget 2003
	3.2 B&R AutomationTarget 2005

	4 LTX FUNCTIONS
	4.1 Configuration of the Hardware
	4.2 Use of LTX Functions
	4.3 Example Gate Measurement

	LIBRARY MANAGER
	1 OVERVIEW
	1.1 Functions

	2 LIBRARY MANAGER
	2.1 General Information
	2.2 Term Definitions
	2.3 Library Guidelines
	2.4 Global Settings

	3 B&R LIBRARIES
	3.1 Overview of Standard Libraries
	3.2 Online Help
	3.3 Insert Library

	4 USER LIBRARIES
	4.1 Creating a Library
	4.2 Creating an IEC Function Block
	4.3 Function Block Properties
	4.4 FBK Interface
	4.5 Source Code for the Function Block
	4.6 Creating Online Help
	4.7 Creating a C Library
	4.8 Reusing Libraries

	5 PG2000 LIBRARIES
	5.1 PG2000 Porting Guide

	ANSI C
	1 OVERVIEW
	2 ANSI C
	2.1 Development History
	2.2 Definition of Terms
	2.3 Command Groups

	3 STRUCTURE OF C PROGRAMS
	3.1 B&R Expansions
	3.2 Creating a C Task
	3.3 Variable Declaration
	3.4 Data Types
	3.5 Line Coverage
	3.6 Functions
	3.7 Debugger
	3.8 Using Arguments with Complex Data Types

	4 USING B&R LIBRARIES
	4.1 General Information
	4.2 Example

	5 COMPILER INFO
	5.1 File Types
	5.2 Compile Procedure
	5.3 GNU C Compiler

	SEMINAR REVIEW
	1 SEMINAR REVIEW
	2 SEMINAR OVERVIEW
	3 SALES LOCATIONS

