Automation B&R Automation Studio™

STNASPROG-E

B&R AUTOMATION STUDIO™
PROGRAMMING

Model No.: STNASPROG-E

Version: 2.0
MP/SP/ZR 04/2001

Training ASPROG

Schulung / Training

Automation B&R Automation Studio™ 1. Seminar Start

SEMINAR START

I INTRODUCTIONooiiiiiiiiiiiiiiiiiceieceeeeceee e 2
2 SEMINAR OVERVIEW ... 3
3SCHEDULEcooiiiiiiiiiiicec e 4

Training ASPROG Page 1.1

Schulung / Training

Automation B&R Automation Studio™ 1. Seminar Start

1 INTRODUCTION

General Information
In the next few days - for the duration of this seminar - you will be working
together with your seminar leader.The technical expertise of your seminar
leader is not the only factor responsible for your personal success during this
seminar.

Success depends on cooperation and interaction between the course members
and the seminar leader, as well as the attitude and application of individual
course members towards teamwork and the course in general.

Introduction Seminar Leader
Please allow the seminar leader to introduce him/herself. Make notes if necessary.

Introduction Course Members
You should get to know your colleagues as you will be working together as a group
and also in smaller groups during the seminar (name, company, product, application
area).

Your personnal success on this course also depends on your expectations.

Training ASPROG Page 1.2

Automation B&R Automation Studio™ 1. Seminar Start

2 SEMINAR OVERVIEW

e B&R Automation Studio

e B&R Automation Runtime

e B&R Automation Target

e B&R Automation Net

e Project Guidelines

e SFC Segential Function Chart

e AB Automation Basic

e Data Handling

e TPU Code Linker

e Library Manager Introduction

e ANSIC

Training ASPROG Page 1.3

Automation B&R Automation Studio™ 1. Seminar Start

3 SCHEDULE

The time available during the seminar is a very important factor.

Start

Lunch Braek

End

Breaks We will taking short breaks at various intervals through out the seminar for tea and
coffee and to give the smokers the chance to light up!

Successful teamwork not only relies on your personnal motivation, but also on
meeting the expectations of your seminar leader.

The seminar leader expects:

That all course members are prepared to take an active role and cooperate with other
course members during the course of the seminar. “Nobody is perfect”, this includes
your trainer, constructive feedback is always welcome.

Training ASPROG Page 1.4

Integrale N . "
Automation B&R Automation Studio™ 2. B&R Automation Studio

B&R AUTOMATION STUDIO

L OVERVIEW ..ottt 2
2 B&R AUTOMATION STUDIOoooiiriiiiiniiiiieienieeeieneeeene 3
2.1 One Tool Many Targetscccccveeereeeerieeerieeeiee s 3
3 AS DIRECTORY STRUCTUREccociviiiiiiiinieieieeeeeee 4
4 PROJECT DIRECTORY STRUCTUREcccoeiiiiiiiieiienne, 5
S AS PROJECT ..ottt 6
5.1 0pening Projectscoocvveeriieeriiieeniieeniieeiee e 6
S.2LAD TasK oot 8
5.3 CTaSK . 9
5.4 Variable Declarationcccccveeveiieeniiieeniiieeniieenieeeieeene 10
5.5 Transferring Projectscccevvveeriiiieniieeiiecieeseee e 11
6. PROJECT SETTINGSooiiiiiiiiiieieneeieeeeeeeee e 13
6.1 IEC EdIOr ..ottt 14
6.2 Ladder Printer Settingsc.ceevveerrueernieeniieesieesieee e 15
6.3 C COMPIIET ...eovniiiiiiiiieeiieeeeeeeeee et 16
6.4 Build and Transferccoccveviiiiniiiiniieieccceceeee 17
6.5 MOLION <.ttt 18
6.6 Library Managerccceeevveevnieeiiiienieeeieeeeiee e 19
6.7 Naming CONVENTIONSccevuvrerrireeriiieeniieenieeerireesieeesieeenns 20

Training ASPROG Page 2.1

Schulung / Training

Automation B&R Automation Studio™ 2. B&R Automation Studio

1 OVERVIEW

During the ASINT course, we got to know Automation Studio as a general tool. Our
task in this course is to learn about AS features in greater detail, which will help
you use the full range of advantages for many different types of applications.

B&R Automation Studio
A brief overview of the B&R Automation concept with B&R Automation Studio,
B&R Automation Net, B&R Automation Runtime and B&R Automation Targets.

AS Directory Structure
The question: “Where can I find it?”, will be answered in this chapter.
Finding header files, archive files, system files, etc.

Project Directory Structure
The question: “Where should I save it ?”” is answered in this chapter.
Storing source files, executable BR files, project info files, etc.

AS Project
Brief description of the AS project structure and an overview of the most important
points from creation to downloading a project.

Project Settings
Overview of the global project parameters.

Training ASPROG Page 2.2

Automation

2 B&R AUTOMATION STUDIO

2.1 One Tool Many Targets

B&R Automation Studio™

2. B&R Automation Studio

There is a programming tool, B&R Automati-
on Studio, that can be used with many diffe-
rent target systems. This enables simple
scaling and optimal compatibility with the

AN
automation platform. B&R Automation Studio
communicates via B&R Automation Net using
B&R Automation Runtime. B&R Automation
AR Runtime runs on various B&R Automation

targets.

L o =

e

£ AR

- - TH
B&R Automation Studio

(L A1 z du T

- '-.;?:-1 e el = -.-'-'_;;;_ —

' .Ila e S -.

1 -

ey — e

|~ e g —=

} — e =] |

B N |¥ -i-I.:' l‘_;:. !.TTI - ;_I Parfection in Automation

: ...\:a- L :l.__ ! iy 1 P

™ ¥ o _‘_'_ Lodringg

2 copyright 1997-1898 by
B&R Industrie-Elekironik

Training ASPROG Page 2.3

Integrale A .
Automation B&R Automation Studio™

3 AS DIRECTORY STRUCTURE

2. B&R Automation Studio

You can find your way around the AutomationStudio structure quickly and easily

using the following directory list which provides an overview of the directory

contents. This structure is set up when you install Automation Studio.

Iﬁ Dezkiop

= =) My Computer
..@ 3% Floppy [4:]
SR=T 5
E}{Eﬂ Brautamation
=] As
#-_1 GruDoc
#-] Grunst
& Hardware
- Library
-] Motion
&1 System
&[] Templates

-{_1 BrSetup
-1 Doc
~{_] Help
- Log
-] Pwi
- Pw
-1 Samples
#-] Specials
- Tooks

Automation Studio installation path

AS main directory

GNU documentation “Index.html”

ANSI C specific files

B&R hardware configuration files

B&R library files

B&R motion components

B&R system modules, operating systems
Templates for DOS/AS project conversion
B&R TPU components

AS executable files

Install / uninstall information
Documentation

Help files

PVI Logger — log files

PVI executable files

Panel Studio files

Examples

Files for special modules

Tools

Fig. 2.1: B&R Automation Studio directories

Training ASPROG

Page 2.4

Automation B&R Automation Studio™ 2. B&R Automation Studio

4 PROJECT DIRECTORY STRUCTURE

When you create a new project with AutomationStudio, it automatically creates a
project structure and gives it the directory name: “Project name.pgp”.

All project specific data, information, sources, etc. are stored in a directory structure
under this directory. This allows you to move or copy the project directory at a later
date, and to make it easily accessible for other programmers.

The project directory has the following structure:

=-1_1 RI0_pump.pap Project ,RIO_2005*
=-E3 Dbk Database information
] Libfiles Database infos about libraries used
{7 Rio_pump.sps Project specific data for AS
=] Librany Libraries used in the project
-3 runtime Library ,Runtime*
{1 Help Help files for the library
l:l i385 Compiled library for Intel platform
{:l Gk Compiled library for Motorola platform
“{] Source Source codes for the library
I':'H:I parm AS program modules
=1 RID_pump Rack name for this project
=-{3 Cpu CPU name in this rack
"|:| inc Include directory for C tasks
-3 src Source directory for C tasks

Fig. 2.2: AS project directory structure

Note
The last two directories “inc” and “src” can be created by the user if C tasks are
used.

Training ASPROG Page 2.5

Automation B&R Automation Studio™ 2. B&R Automation Studio

S AS PROJECT

5.1 Opening Projects

In order to be able to open an existing project, select the main menu item
El File: Open Project.

Lookin |3 RIO_2005.pgp =] =

Dbk,

Library

File: name: |F|i0_2Dl35.gdm Open I
Files of type: IProiect Files [*.gdm] j Cancel |

Fig. 2.3: Open Project dialog box

Select the respective GDM file, e.g.: “RIO_2005.GDM” and activate it with [Open].
GDM stands for Graphic Design Method.

This GDM file is in the project directory and has the name “prj_name.pgp”.

Training ASPROG Page 2.6

Automation B&R Automation Studio™ 2. B&R Automation Studio

A project is an entire system or machine and can be separated in the hardware
configuration into Project, PCC, and CPU layers. On the software page, the CPU is
separated into the individual task classes with their tasks and system modules.

This has a tree structure in the project window.

lﬁ“ B&R Automation Studio - [Rio_2005.GDM [Project]]

4 5Ie Edit ¥iew |nsett Open Project Object Tools Window 2 = |ﬁ'|i|
/ el 2elocxElE e BN o o
s %el no. | Slat Software |Log bookl Descriptionl
/ 2“;'0—2005 M adule M ame | Wersion | Transzfer to | Size [bytes)
—Hig 2005 EFO
b / Fak 3P5734.9 P
C 630
i, L zer Rat
d C : — f
;| %DM?B [13-2 “ ystem M
e <y a0) syscort g
__b ?AIBSDé . 4| runtime
:% 3603506 B] et ~h
L 3DM4TEE 7 T~—
- 3EX15060-1 8 I
L2 9 u
¥R 2005 Remote 1/0 EFO ~~ k
M~
m
4| | »
A= Compiling rio_pump ok =
| e P R -
5 4| | »
1 Output I Debugl Find in Files I
For Help, press F1 [Line 1 of 9 [|OFFLINE 7

Fig. 2.4: Overview of Automation Studio project

Title bar with name of the open project

Menu bar

Toolbar

Root directory of the project tree is the project name
Controller name, PCC name

o o 0 o W

The root directory of the software tree is the selected CPU
Task classes with defined cycle time

LAD Task

C task, can consist of several files

C task source file

m... System modules

=0 —h

~ o

Training ASPROG Page 2.7

Automation B&R Automation Studio™ 2. B&R Automation Studio

5.2 LAD Task

A new task can be created using the Object Wizard by selecting Insert: New
Object: LAD Task. The source code for a LAD task (*.SRC extension) is always
placed in the CPU program module directory:

ﬁ' B&R Automation Studio - [Rio_2005.GDM [Project]]

J File Edit View Inset Open Project Object Took window ? == =]
Deaaef =l xF0acE &m0 e
Model na. | siot || Software | Log back | Description |
E‘;‘“ RID_2005 Module MName I “ersion I Transfer to I Size [bytes)
CH 2005 BFO
K Sz CFU
"ok 3PS7349 P o Cyclic #1 - (10 ms]
|— Tio_pLimp % 0.00 Lsger RAM
“ System
|:] sysconf W20 User ROM 800
9 12 | runtime ¥1.01 UserROM 5708
e DI476E 3 rio_ib YE10 UserROM 53664
7k 3004806 4
—?;J,u 343506 5
A, 3803506 3
7L 3DM47EE 7
—;& 3Ex150.60-1 g
L& S
¥R 2005 Remote 1/0 BPO
4| | »
El
=
[
1 Output I Debugl Find in Filesl
Far Help, press F1 |Line 3f 7 [|DFFLINE [4

Fig. 2.5: New LAD task in the software tree

BX Exploring - C-\Projects\RID_2005.pgp\pgm\R10_2005\CPU

File Edit “iew Toolz Help

|AII Folders | Contents of 'C:\Projects\RI0_2005. paphpgrtRI0_20054CPL"
=1 RI0_2005.pap 2| [Name | Size | Tupe |
[dinc File Felder
- Libfiles e File Falder
-0 Rio_2005.5ps [e#] Cp2B0v21 51 SEEBKE 51 File
=] Library ctask.OCC 1KB GCC File
- B0 runiime rin_lib. br 53KB BR Fie
3 Heb [##] rio_pump LD 1KE LD File

fio_pump.SRC 10KE SRCFile
untime. br 10KE BR File
EH:I parm sysconf. BAK KB BAK File
syscon.br KB BR File

4

|1 object(z] selected

1 |

=

Fig. 2.6: Source code in the project structure

Training ASPROG Page 2.8

Automation B&R Automation Studio™ 2. B&R Automation Studio

5.3 C Task

Using Insert: New Project: C Task.

When inserting a C task, the C files are normally copied to the CPU program
module directory (*.c/*.h/*.s/*.a/*.0). Save the C files in a subdirectory to improve
clarity of the project.

Also see Project Guidelines II or chapter ANSI C.

ﬁ‘ B&R Automation Studio - [Rio_2005.GDM [Project]]

I File Edit Yiew Inzett Open Projpct Object Tool: Window 2 _|5||5|
DeEall/Ees s xElg e as ol
Madel no. I Slat Software | Log bookl Descriptionl
E‘R’* RI0_2005 todule Marme I Wergion I Tranzfer to I Size [bytes) I
- 2005 BFO |15 cPu
ok 57943 a & Cyclic #1 -[10ms]
To_pUmp W 000 Llzer RAM E16
c_task W 0.00 Uger RakM 0
- L 3DI47EE (al syscont v 210 UserROM 800
-7 3004806 4 { runtime V101 UserROM 9708
AL 3e3508 5 al fio_lb ¥510 UserROM 53664
A, 203506 E
5L 3DM4ATEE 7
- 3EX150.601 g
_g q
R 2005 Remote 1/0 BFO
4| | »
|
=
=l
1 Output IDebugI Find in Filesl
For Help, press F1 |Line 5 of @ [|OFFLINE v

Fig. 2.7: New C task in the software tree

5‘ Exploring - C:\Projects\RI0_2005 pgpipgmiRI0_20055CPUAsIC
File Edit “iew Toolz Help
All Folders Contents of 'C:h\ProjectshR10_2005 pgphparmtRI0_20054CPUY
E|{:| RI0_2005.pgp ;I M | Size | Tupe |
-] Dbk KB CFilz
ED Libramy
=0 runtime
=1 pam
=] Rin_2005
E{:l Cpu
o inc
= . _jj
| o] [« | |
|‘I object|z] selected |B bytes 4

Fig. 2.8: Source code of the C task in the project structure

Training ASPROG Page 2.9

Automation

5.4 Variable Decl

B&R Automation Studio™

2. B&R Automation Studio

aration

The menu ﬁl Open: Declaration opens the respective variable declaration. If the

CPU is selected, all global variables are shown.
ﬁ‘ B&R Automation Studio - [Rio_2005.GDM [Project]]
I File Edit “iew Inset Open Project Object Tool: “Window 2 -|ﬁ'|5|
DewallEes - xElrac s an e
tadel no. I Slat Software | Log bookl Descriptionl
El':“ RI0_2005 tadule Marie Werzion Tranzfer to Size [bytes)
i 2005 BFO :
Sk 3P57949 F
f? . User Ra
' |J: c 0.00 UserRAM 624
’ m Properties... 1134
. | 1.2 B s
Qe DI476E 3 l: spscon v 210 UserROM 800
b 004806 4 runtime v 1m UsstROM_ 9708
Fig. 2.9: CPU variable declaration pop-up dialog box
Type Scope Attribute Remark

T empid

TMEMor

gtiHz_TempSet INT global MEmon
gDiRI0_PurmpStart BOOL global IR51.1.1.1 Tz switching delay
gDiRI0_PumpStop BOOL global IR51.1.1.2 Tz awitching delay
glhoHz_heat BOOL global memary * remarent
gDoRI0_Pump BOOL global GR51.1.21 * remarent Trangistor, 28/ 244 0C
Fig. 2.10: All global variables
e Name
All variables are accessed using their symbolic names.
e Type
Types are automatically assigned for I/O. The programmer has to enter the
type for internal variables used in tasks.
e Scope
Internal variables should always have the smallest possible scope.
I/O and variables for communication between task must be global.
e Attribute
Defines hardware assignments, internal variables or constants.
e Owner
The owner e.g.: of a L structure or constant is shown.
e Value
Initialization value. Should be remnant. Variables should be initialized in the
INIT SP for the task.
e Remark

Additional information or standard text.

Training ASPROG Page 2.10

Automation B&R Automation Studio™ 2. B&R Automation Studio

5.5 Transferring Projects

The main menu item Project: Transfer to Target transfers all the software

modules to the controller. An automatic software compare is carried out between
the PCC and the project before the transfer is made. Only modules currently not
available or with newer creation dates are transferred to the controller.

The target memory for each individual module can be selected by marking the
object with the cursor and selecting the main menu item
Object: Transfer to: Target Memory.

If AS finds one or more differences between the project contents and the PCC, it
informs the programmer with the info message “Software Conflict” and displays the
following dialog box.

Note
Software Conflict Recognition
Software Mizmatch EHE3
The module "rio_pp" on the target iz not a part
of the project. How should the mismatch be
handled
tizrnatch Handling
£ U plnad Hhiest fromthe target
=" Delete Object from the target
™ |gnore Object on the target
Delete all Cancel
Fig. 2.11: Software Conflict dialog box
e Delete Object from the target
The module identified as being different is deleted from the controller.
IMPORTANT

modules identified as “disabled” are also deleted from the controller.

e Ignore Object on the target
The module is not changed. If it is a task with 1I/O operations, conflicts can
occur.

Training ASPROG Page 2.11

Integrale . .
Automation B&R Automation Studio™

Example

e C(Create a LAD task with a latch.

e Transfer the project and test the task.

e Rename the task and transfer the project again.

Original Task:

Project Name:

Ladder Diagram Name:

Resource:

Target memory

Changed Task:

Project Name:

Ladder Diagram Name:

Resource:

Target memory

as_rev
re_latch

C#2

FLASH PROM

as_rev
wd_new

C#2

RAM

Training ASPROG

2. B&R Automation Studio

Page 2.12

Schulung / Training

Automation B&R Automation Studio™ 2. B&R Automation Studio

6. PROJECT SETTINGS

The parameters described in the following sections are globally valid for the current
project.

The project settings can be found under Project: Settings.

& B&R Automation Studio [_ O] x|
Ele Edit “iew Inset Open el Ohiect Tools Window 2
EEI TR e EEN R
— Buldal Chi+F7T
Model no Change 05 version... esciiption I
E"}-};\ HIDEUFEIUEMP Open Scheme.. | Wersion I Tranzfer ko I Size [bytes]
5L 3Ps7949 Save Scheme. o]
2 vt Soheme Vo UserReM 644
—-i7) ¢ 3CP2E0E0-1 Feset Scheme Y00 Uiser BM 0
t-t,_@ W o ke 4
~ 3 W 0.00 User RisM 0
7L 30147
[20430 vazz UserROM 800
7, 3813808 5
A, 340350.6 E
2 3EX160.ED 7
,ﬂ g
EFUR 2005 Remate 170 BFO
5k 3Psagnd P
ol 3EX250.8041 P
7. 3DI476E 1
b 3004B0E 2
7, 3813506 3
—f] 4
< | »

Displays the settings for the entire project [TCFIP |OFFLINE [UM G
Fig. 2.12: Opening project settings

Training ASPROG Page 2.13

Automation

6.1 IEC Editor

Settings

B&R Automation Studio™

Maring conventions I Library kanager I hation | Build % Transfer |

C Carnpiler

- Edit

onitaring option:

I Ladder Print 5ettings

|EC Editor Settings

I M ark.

¥ Autoformat & Datted line
= Line

Tabswidth: |4 =

- I € Filled

Font... |

“idth of monitar window: I50 4
Distahce of bwo variables: |2DD

— Colar

Linenumbers ... | Current pasition ...

Ereakpointpozition. . |

Feached poszition ...

Set breakpaint .. | Manitaring of BOOL ..
QK. I Cancel |
Fig. 2.13: IEC Editor settings

Monitoring options

2. B&R Automation Studio

Autodeclaration

If new variables are entered, the varia-
ble declaration for these variables is
automatically opened when
Autodeclaration is activated.

Autoformat

The source code is automatically
formatted, indentation and colored
highlighting of keywords.

Tab-Width
Width of the tabulator.

Font
Font to be used in the editors.

Mark
Representation of marked text.

If monitor mode is active, the editor window is split in two sections. The
right section of the window shows the variables and their values. With
,»Width of monitor window*, you can set the width of the right section of the
window as a percent of the total width of the window. The value ,,Distance
of two variables* determines the distance between two variables in the right
section of the window if several variables are shown in a line.

Colors

You can define different colors for clear representation of line numbers,

breakpoints, etc.

Training ASPROG

Page 2.14

Integrale
Automation

6.2 Ladder Printer Settings

e Symbol Details
Which details should be printed for
symbols.

e Print Order
Order of the printout if the LAD does
not fit on a page, is either too wide or
too long.

e Symbol Print Size
Size of the symbols in millimeter

Fig. 2.14: Ladder Print Settings

Integrale

6.3 C Compiler

e Additional build options
Information concerning options can be
found in the GNU compiler
documentation

e Include directories
The list contains all include directories
used by the compiler.

Fig. 2.15: C Compiler

Automation B&R Automation Studio™ 2. B&R Automation Studio

6.4 Build and Transfer

Settings e Generate Code for PP
CCompiler | Ladder Prirt Settings | IEC Editor Settings | All PP SpeCifiC Compilel‘ Options are
Naming conventions I Library b anager I Motion Build & Transfer
used.
'Bluﬂd e Locater local variables at
variable area = DPR or USR RAM
Locate local variables at: IMemor_l,l pioal j
[ASCI import: e ASCIH 1mport
Impot pats: | Browse_ | Options for ASCII import
% Check date and time of SRC file
' Check date and time of generated BR module file L TranSfer
™ Prompt before importing files DO nOt transfel‘ llbraI‘y information tO
target system. The library information
— Tranzfer
F St b contains descriptions for calling FBKs
Strip library info for transfer
which are only required for project

creation. This information is not needed
on the target system.

ak I Cancel

Fig. 2.16: Build and Transfer

Training ASPROG Page 2.17

_

6.5 Motion

e NC language
Language of the NC structures (Englich
or German).

Fig. 2.17: Motion

Integrale
Automation B&R A

6.6 Library Manager

Uerion =]
—

Library Manager

Fig. 2.18:

Library directories
List of directories to be used when
searching for libraries.

Standard directory
The target memory for the libraries on
the target system can be set here.

Integrale
Automation

6.7 Naming Conventions

e Identifiers
Rules only according to the IEC
standard or with B&R extensions.

Fig. 2.19: Naming conventions

Integrale . R
Automation B&R Automation Studio™ 3. B&R Automation Runtime

B&R AUTOMATION RUNTIME

L OVERVIEW ..ottt 2
2 AUTOMATION RUNTIMEcccoooiiiiiniiiiinieneeieeeeeeseee s 3
3 INDIVIDUAL SYSTEM CONFIGURATIONSccccociiviiienne 5
3.1 Memory Configurationcceeeveeriiieeniiieeniiesniee e 6
3.2 Software Object Configurationccecceeeveiveencieeeniiieennneen. 7
3.3 System Configurationcceeeecueeerieeenieennieenieeeieeeneenn 8
3.4 Communication Configuration...........ccceeeveevcuveenieeeneeennen. 9
3.5 INEEITACES ..o 10
3.6 Timing Configurationccceevveeivieernieeeniee e 11
3.7 Resource Configurationceeeveereueeeniiieeniiieeniieeenieeenns 12
4 ERROR LOGBOOKooiiiiiiiiiiiiniieiecieceeeee e 13
5 ONLINE INFORMATIONcccooiiiriiiiinieieeientenieeeeeeie e 15
5.1 System Informationcccceeevveeiiiieniieiniiecieeeeeeeieees 15
5.2 CPU Memory Informationcccccceeevveeviiieenieennieenneens 15
5.3 Real-time ClocKoooviiniiiiiiiiiiieicneceeeeeeeeeee 16
6 I/O HANDLING AND TIMINGcccoeoiiiiiiiniiiienieneeeeeeieeen 17
6.1 I/O Image Handlingcccoevviieniiiiniiiiiiieeiceeeeeeeee 18
7 SYSTEM STRENGTHScooviiiiiiiiieeeeeeeceeeee 20
7.1 Strengths of the B&R Multitasking System 20
7.2 Strengths of the B&R /O Systemccocceeeveiieniieeninenns 21

Training ASPROG Page 3.1

Schulung / Training

Automation B&R Automation Studio™ 3. B&R Automation Runtime

1 OVERVIEW

B&R Automation Runtime
B&R Automation Runtime represents the layer between B&R Automation Studio
and the B&R Automation Target.

Individual System Configuration
The PCC system is preconfigured by B&R. The task class times and memory sizes
offered can be easily configured by the user. However, further adaptations should
only be made by experienced users under B&R’s guidance. Also see online help.

Error Logbook
System messages are automatically entered in the error logbook. They can also be
entered by an application using standard functions.

Online Information
General system, time and memory information can be requested and changed here.

I/0 Timing
B&R provides customers with a big advantage, all systems can be programmed in
the same way with the same program. This makes it easy for the user to make
changes within the B&R2000 Family.

System Strengths
B&R Highlights

Training ASPROG Page 3.2

Automation B&R Automation Studio™ 3. B&R Automation Runtime

2 AUTOMATION RUNTIME

B&R Automation Runtime represents the layer
between B&R Automation Studio and the

AN B&R Automation Target. The connection is
established via B&R Automation Net. The
physical media used for communication is not
important.

AR

Training ASPROG Page 3.3

3. B&R Automation Runtime

B&R Automation Studio™

Automation

HSV14
w
(Aluo peay) w_ |
(emmypeey) ADU .m
31NAOWN V1va sSs
7 INVHX1H |
! JOVII LNdLNO 7 <
7 1ndni] | 1ndNi] | 1NdNI] | 1nani] | 1nani] | 1NdNI] | 1ndNi| | 1nani] | 1ndNI] | 1ndNI] Wvd _N
ST1aVIVA VE01D % @)
jueuwal |
jusuew.lad o m
R [o < ©
3 | | I g < <
Ol O] O Q9 O O
ol 1o | o |9 |© 0
- - - - JE o | -
‘6\5\4 S\M\M m
XXX X
0| 9 |0 0 |9 (@ 2]
=R R & pa
- - = —_/ O
= [= —
Z z Z <
)
oesul g HSV1d ‘WvY —I
Jowi1-MH o
010z % o
09sW 6 o9sw / <C
(09sw 000°0¢)| (99sw 0ol) | (995w 0G) (0ssw 0g) JBWil-MH | JewiL-MH ONAS-OIY 00¥Ia| swhuny -
ossw Q| 985w OOk 28sW 0§ o8sw 0l 0102 010z | S00Z/0L0Z osswe | (sngoO/l) 0LOZ 43-0l |uopedIUNWWOY o
[T
%)
)
V#OL1L | €401 C#O1 I#01L | Vv#SH | €4SH | ¢#SH | L#SH Oull 0) €
%)
dvdldng HSV14 s Z
e s
=
v O
: Corooma) >z
a1 ad dVH10IY >

NdO 00024®9

Page 3.4

Training ASPROG

Schulung / Training

Automation B&R Automation Studio™ 3. B&R Automation Runtime

3 INDIVIDUAL SYSTEM CONFIGURATIONS

Note

Each user has the possibility with Automation Studio to easily configure the PCC
according to individual requirements:

e Memory, e.g.: PCC global variable pool, digital and analog, FIX RAM,
temporary memory

e Stack, e.g.: Task class stack C#1..C#4, operating system data stack

e Task class timing, e.g.: Duration and tolerance, idle time

We normally work with the standard settings. But if it is necessary to change one of
the items listed above, make the change in the Object Properties Edit: Properties.

Here, we also recommend using the shortcut menu by clicking on the object with
the right mouse button !

Now we will discuss some important configurations. Information concerning the
other configurations can be found in the online help.

If you lose track of the changes you have made, click on the [Default] button to
reset the defaults.

Saftware I Log baok I Description I System Software Properties
Communication | Interfaces | Tirmnirg | Resources I
El @ CPL Imsert Object... CP2E0 | termany I M odules I System
Declaration
Ui i) E‘
_— | Software for BER 2000 PCC
Froperties. ..
. Ident: 3CP2E0.60-1
Fig. 3.1: Open the
CPU properties Type: Central Processor, 2x IF-Slot, 1AM,
Module 05 version: |V2.1D
Narme: bu

Selected target software version: Y210,
Froceszor type: mBSk.

Diefault |
Ok, I Cancel | Help |

Fig. 3.2: System configuration

Training ASPROG Page 3.5

Automation B&R Automation Studio™ 3. B&R Automation Runtime

3.1 Memory Configuration

System Software Properties
Communication] Interfaces] Timirug] Fesources]
CP260 Memoy | Modues | Spstem |
(ﬁ Software for BER 2000 PCC
uzed configured

Ainalog 0 4056 Eytes
Digital 0 4036/ Bits
Analog permanent 0 0 Eytes
Digital permanent 0 07 Bits

Fl-Ra 0 KkBytes
TMP-Rah 0 KkBytes

Ok | Cancel Help

Fig. 3.3: Memory properties

e Analog

PCC global PVs > Bit
e Digital

PCC global PVs, Bit

e Analog/Digital permanent
Permanent memory = cold restart safe.

e FIXRAM
Cold restart safe RAM memory. The size is a multiple of 16 kByte.
e TMP RAM

Temporary RAM memory. Initialized with O during each warm restart.

Training ASPROG Page 3.6

Automation B&R Automation Studio™ 3. B&R Automation Runtime

3.2 Software Object Configuration

System Software Properties [X]
Communication I Interfaces | Timirug | Rezources I
CF260 | termony Modules | System

® Software for B&R 2000 PCC

uzed configured

Cyclic objects 3

[i
Uger non-cyclic objecte 0 I 2
I 12

Syz. non-cpclic objectz 10

BLR madules 7 100
Log book size I 40) entiies

Ok I Cancel Help

Fig. 3.4: Software object properties

e Cyclic objects
Cyclic objects are application tasks.
e User non-cyclic objects
are required for special system expansions. Can only be created together with
B&R.
e Sys. non-cyclic objects
Operating system expansions.
e B&R objects
all modules that can be transferred to the controller, e.g.: tasks, data
modules, etc.
e Logbook size
certain system messages are also saved in the system logbook.

Training ASPROG Page 3.7

Automation B&R Automation Studio™ 3. B&R Automation Runtime

3.3 System Configuration

System Software Properties [|
Communication | Interfaces | Timning | Resources |
CP2ED I M emary I Modules System
& Software for B&R 2000 PCC
configured

Queues I 4]
Semaphores I 4
Stack/05 Area 000004400
Systemn modules I El
Fieboot mode after Fatal eror Idiagnose 'l
Reboot mode after reset ISB'ViCE j'
Reboot mode after powertail Iwarm start 'l

Ok I Cancel | Help

Fig. 3.5: System properties

e Queues
are used for communication between tasks.

e Semaphores
are variables which can be used to synchronize access of common memory
areas.

e AVT entries
Address distribution tables. Used for library functions.

e Stack
Operating system data memory. (automatically set starting with AR 2.22)

e System modules
Number of hardware system modules.

e Reboot mode after fatal error
If a fatal error occurs when starting the system, the system goes into
diagnostic mode. That means the application is stopped.
However, if “cold restart” is set, the system first attempts a cold restart.
Then the application can continue running. If the error is still there, the
system boots again in diagnose mode.

Training ASPROG Page 3.8

Automation

B&R Automation Studio™ 3. B&R Automation Runtime

3.4 Communication Configuration

System Software Properties E
CP2E0 I I emony I Madules I Swysten I
Communication | Interfaces I Timing I Resources

25

Saftware for B&R 2000 PCC

configured
Cammurnication channels I
Device diver I 15
-0
P tables 7
Logical variable liztz I 10
Fhygical wvariable lists I 10
Caonnections I 2

™ | Cammunicatian trbhe mede

Ok I Cancel Help

Fig.

3.

6: Communication properties

Communication channels

Corresponds to the number of interfaces that should be used at the same time
for communication.

Device driver

Drivers for the various protocols (Net2000, Frame Driver, etc.)

Force commissions
Number of force commissions that can be active at the same time.

PV tables
A table contains max. 256 variables

Logical variable lists
are used for network communication.

Physical variable lists
are used for online communication

Connections
The number of parallel connections (INA) allowed can be set here.

Turbo Mode (starting with AR 2.20)

When activated, the INA services are also handled during idle time.
That means faster transfer of tasks, faster online communication, etc.
However, this mode only makes sense if enough idle time is available.

Training ASPROG Page 3.9

Automation

3.5 Interfaces

System Software Properties

cP2E0 | Memoy |
Communication Interfaces

Modules I

| Timirg I

% Software for B&R 2000 PCC

B&R Automation Studio™

Swysten I
Resources

Select lterm:

— Dievice section

Interface Typ

Slot Subslot

Paramneter

JIFt =] geial] [Local x| [ross =]

Farameter [FMadem only]

—

3. B&R Automation Runtime

Add | Remove I

Ok I Cancel | Help |

Fig. 3.

7: Interface properties

As default, AutomationRuntime defines the first three interfaces on the local CP
for communication with AutomationStudio.

If additional interfaces are required for online communication with
AutomationStudio, or special parameters are needed, they can be configured as
parameter sets in this dialog box.

Interface
Several interfaces can be available on an interface module. These interfaces
are numbered. The desired interface is selected using this parameter.

Type
Entry for the physical connection, e.g.: RS232, CAN, ETHERNET, etc.

Slot
Entry for the module slot number where the selected interface is found.

Subslot
Entry for the subslot on the module where the desired interface is found.

Parameter
Each interface type has default parameter. Changes can be made here, e.g:
Baudrate.

Modem Parameter
Special modem settings.

Training ASPROG

Page 3.10

Automation

B&R Automation Studio™ 3. B&R Automation Runtime

3.6 Timing Configuration

System Software Properties [x|
CP2E0 I I emony | M odules System |
Communication I Interfaces Tirning Resources

O

Softwars for B&R 2000 PCC

Delay after cold restart I [3EC
Dielay after warm restart 0 sec

Faower failure reparting delay I 0 sec

configured

Allaveed spstem time violation

0m

ec

] I Cancel Help

Fig.

3.

8: Timing properties

Delay after cold/warm restart

These times are delays that must pass before

I/0 modules or system modules can be accessed. In this way, these modules
can complete their initialization before being accessed by the CPU.

Power failure reporting delay

after a power failure, the CPU executes a warm restart. For applications with
expansion, it is possible that the expansion drops out before the CPU and the
CPU activates service mode.

When the voltage returns, the CPU starts in service mode. If a time is entered
here, the CPU waits before activating service mode.

Allowed system time violation
The operating system is also monitored for cycle time violations. A
maximum system cycle time violation can be set here, in 10ms steps.

Training ASPROG Page 3.11

Automation B&R Automation Studio™ 3. B&R Automation Runtime

3.7 Resource Configuration

System Software Properties [x|
CP2E0 I I emony | M adules I Spstemn I
Communication | Interfaces | Timnitg Fiesources

;; Software for BRR 2000

Mo, of cyclic resournces

4 cuclic classes

[— |—
Mo, of timer resources . o

1 timer classes

¥ Enable EXC class " Enable IRE class

] I Cancel Help

Fig. 3.9: Resource properties

e No. of cyclic resources
Number of cyclic task classes possible.

e No. of timer resources
Number of timer task classes.

e Enable EXC class
Enable the exception task classes.

e Enable IRQ class
Enable interrupt task classes, only possible on B&R2010.

Training ASPROG Page 3.12

Automation B&R Automation Studio™ 3. B&R Automation Runtime

4 ERROR LOGBOOK

All errors that trigger an EXCEPTION are entered in the system logbook. If an
exception is triggered, all outputs are switched off. The application on the PCC is
stopped. To determine the cause of the error, we will select:

e The CPU in the hardware tree

e The tab “Logbook” in the software tree

Then a window is opened which shows the last messages in plain text. The top
message is the newest.

Some user actions are entered in the logbook, but the application continues running,
e.g.: changing the time. Such entries are called WARNINGS.

Time Error | Information | Module Description
10.12.98 15:45:23.00 2075 16#00000000 Syss Warning: Time/date changed

Tab. 3.1: System entry - changed CPU time

If the operator exceeds defined limit values, a user entry can be created using a
function and the PCC boots in service mode.

Time Error | Information | Module Additional Information

22.92.22 92:2222.27 2222 | 16#12345678 | 2772 Warning: 72722227

Tab. 3.2: User entry in logbook

In this case, the service technician must have a reference list of these entries. An
action list is to be added to this reference list.

Training ASPROG Page 3.13

Automation B&R Automation Studio™ 3. B&R Automation Runtime

Example
Read the last entries from the system logbook and analyse the entries with your
trainer.

e Read the entries

e Remove an I/O module accessed by the task with power applied. Then read
the system logbook again.

Training ASPROG Page 3.14

Schulung / Training

Automation B&R Automation Studio™ 3. B&R Automation Runtime

S ONLINE INFORMATION

5.1 System Information

If you click on the CPU symbol with the right mouse button in the hardware tree,
the following dialog box is shown.

] F
) | - cumo K
t-t,g AFEFS N
Delete Spstern | Mermnon I Date/Time I
"L 3DI47E6 (G T faster i Syztem
“k 3D0D4E0E !
7, 3813506 D=l Buff inter: 0K
%, 3403505 iEEEs - Boottype: Diagnose
| IDM4TEG Online infa... Buff. extern: Fail
acwMENCn A =]

Fig. 3.10: Online PopUp Application Memary

Type:

Target S'w': V210

Mode nurmber: 1

Fig. 3.11: CPU Info System dialog box

In the System dialog box, information concerning the boot mode, battery, operating
system and node number are shown if available.

5.2 CPU Memory Information

Information concerning free memory is output here.

CPU Info
Syztern D ate Time I
-~ Detail
free

System: TE15E1E Buyte:

Llzer ROM: 0 Byte:

Ulzer Ra: 852560 Byte:

Fli< Flash: 0 Byte:

Temporar,: 0 Buyte:

Fig. 3.12: CPU memory properties

Training ASPROG Page 3.15

Automation

5.3 Real-time Clock

B&R Automation Studio™

3. B&R Automation Runtime

The time can be changed on the controller in the Date/Time dialog box. This dialog
box shows the current time on the controller. This is not necessarily the same as the

time on PC.

CPU Info

Syztern I Memary | D

January 2000 [Januay x| [2000]
Sun | Mon | Tue | Wed | Thu | Fri | Sat
6 o1 [za |za s = 1
2 4 s B 7 !
5 10 |n 12 13 14 15
16 |17 [1a |1a Jan |=m 22
23 |24 25 |=e a7 Jzs |ma
Y 1 2 5 4 s
~ Time
hour min - gec | Giet PC time |
17 |53 1[5
I_ I_ I_ LI Set Target time |
ok |

Fig. 3.13: CPU Info Date/Time properties

With [Get PC time], the current PC time is set in the dialog box. The settings can
transferred to the target using [Set Target time] and the time change is entered in the

system logbook.

Training ASPROG

Page 3.16

Automation B&R Automation Studio™ 3. B&R Automation Runtime

6 I/0 HANDLING AND TIMING

We will discuss the IO Handling and Timing here. The following points will be
covered:

e [/O Image Handling
e Timing B&R2003

e Main Rack
e CANI/O
e RIO

e Timing B&R2005/B&R2010
e B&R2005 Main Rack
e B&R2010 Main Rack, B&R2005 and B&R2010 Expansion
e B&R20xx CPU with Remote B&R2005 / B&R2010 Slaves

Training ASPROG Page 3.17

Automation B&R Automation Studio™ 3. B&R Automation Runtime

6.1 I/0 Image Handling

Input images are read separately for each task class.
All task classes have a common output image.

Several tasks are executed in two task classes on a PCC:

B&R2005: Main Rack

0 10 20 30 40 50 60 Time [ms]
CPU + + t + t t t Ime |ms
System Mon:gg{i H I:I H |:| . H l:’ H l:’ U l:’ H |:| U |:| .
i
steseen | | | “ “ “ : !
Write Output Image E E E E E E E E E
B&R2005: Expansion, Remote I/O
B&R2010: Main Rack, Expansions, Remote I/O
0 10 20 30 40 50 60 T
CPU ime [ms]
System Mon;ég;]r { ‘ { ‘ { ‘
C#2
/O P
S W | | | | |
ead Input Image
Write Output Image E E E E E E E E E

The representations above show the following points clearly:

e The respective input images are read at the beginning of the task class.
e The output image is written at the end of run time for the task class.

e Differences between timing with and without an I/O processor.

Training ASPROG Page 3.18

Automation B&R Automation Studio™ 3. B&R Automation Runtime

6.1.1 B&R2003 / B&R2005 Main Rack

In this case, the main processor has to emulate the 1/0 processor. The main
processor processes the system manager, then emulates the 1/O processor and reads
the inputs

After this, the task class is processed.

During run time, the main processor emulates the I/O processor again and writes the
outputs. The main processor is also responsible for I/O transfer.

6.1.2 B&R2005 Expansion and Remote I/0, B&R2010 with I/O Processor

Note

This I/0 processor reads the inputs parallel to system manager processing and
writes the outputs at the end of the task class parallel to processing the next task
class.

This multiprocessor concept in the CPU reduces load on the main processor caused
by data transfer.

The I/0 processor is responsible for I/O transfer. The remote 10 master is
responsible for remote 1O transfer.

If exact I/O times are required for an application, the exact information can be
calculated by referring to the user’s manual or using an Excel file.

Training ASPROG Page 3.19

Automation B&R Automation Studio™ 3. B&R Automation Runtime

7 SYSTEM STRENGTHS

7.1 Strengths of the B&R Multitasking System

e Deterministic Multitasking
Predictable task timing

o Different Task Classes
Task classes are called in different, fixed time axes.
Additional tasks do not change the timing.

e Variable Task Class Cycle Times
Optimal timing settings for the different task classes.

e Optimal Processor Load

e Priorities for Task Classes
Timer task class 1 has the highest priority of the cyclic task classes.

e Flexible System Software Updates for the Operating System

e System Logbook
In the system logbook, an entry is always written describing the cause for a
system reset. This logbook can also be used by the programmer, to check
certain defined limits. If a limit is exceeded, an entry is made. In this way, the
cause of a system standstill can always be determined.

e Testing Individual Tasks
Start and stop tasks online, etc.

Training ASPROG Page 3.20

Schulung / Training

Integrale . R
Automation B&R Automation Studio™ 3. B&R Automation Runtime

7.2 Strengths of the B&R I/0 System

e Separation of the I/0 Bus
The I/0 bus can be built with a decentralized structure using expansions and
remote I/0.

e Secure Protocol for I/0 Bus
I/O data is transferred using a secure protocol and stored in the DPR.

e Reducing Load on the CPU
I/O data transfer is handled by the I/O processor (B&R2010).
Bit and byte masking is carried out by the DPR controller.
Servicing the interfaces is carried out by the RISC.
In this way, the maximum CPU capacity is available for application tasks.

e Consistent I/O Images
The input states available at the beginning of the task class and remain
available for the entire task class.

e Symbolic Process Variables
I/O points are accessed in the program using symbolic names. The link
between symbolic names and the I/O points can be defined at any time:

e Taken from CAD programs
e Predefined during programming

e When creatig code in LAD, C files, or when compiling

Training ASPROG Page 3.21

Schulung / Training

Automation B&R Automation Studio™ 4. B&R Automation Targets

B&R AUTOMATION TARGETS

T OVERVIEW ..ot 2
2 B&R AUTOMATION TARGET ..o 3
3 B&R AUTOMATION TARGET 2003 ..ccooiiiiiiiiiiiiiiiiiiieeeia 4
301 MAIN UNIE ceiiieiiieeiiieeeee et e e e e e 4
3.2 EXPANSION ..eviiiiieeiiieeiiieeiiteeieeeeiteesiteeeiteesiteesiaeesiaeesenee s 6
3.3 CAN I/O PIOJECLS ..eeeeuviieeiiieeiiieeiie et 7
4 B&R AUTOMATION TARGET 2005 ..., 12
A1 MaIN UNIE coeiiiiiiiee ettt e e e e e eeeens 12
4.2 EXPANSION ..uvvieiiiieiiieesiiieesitteeitee ettt e sieeeeitee e e sieeesine e 14
4.3 RIO PrOJECLS .eoouiviiiiiieeiieeeieeeeeeeee ettt 15
5 B&R AUTOMATION TARGET 2010 .ovveeeeeeeeeeeeeeee 20
5.1 MaIN UNIE ittt 20
5.2 EXPANSION «..eviiiiiiieiiiiieiiieeeite ettt st 23
6 B&R AUTOMATION TARGET LOGIC SCANNER 26
0.1 MaaIn UNIE ooiiiiiiiiiieeee et 26
6.2 EXPANSION «..viiiniiiiiiiiieeiieeeite ettt 27
7 B&R AUTOMATION TARGET IPC2XXX oo 28
T MAIN UNIE it 28
7.2 EXPANSION «..viiiniiieiiiiieiiieeeite ettt eeiree st e st e sneeesaee e 29
8 B&R AUTOMATION TARGET IPCS5XXX cooviviiiiiiiiiiiieieiienanenn. 30
81 IMAIN UNIE wovviiieeiieiiieeeeeee ettt et e e e e e eeeeeaaaaaas 30
8.2 EXPANSION ...eeiiiiiiiiieiiieeeiieeeiee ettt 31
9 B&R2000 OVERVIEW ... 32

Training ASPROG Page 4.1

Schulung / Training

Automation B&R Automation Studio™ 4. B&R Automation Targets

1 OVERVIEW

B&R Automation Target
A brief overview of the B&R Automation concept with B&R Automation Studio,
B&R Automation Net, B&R Automation Runtime and B&R Automation Targets.

B&R Automation Target 2003
The most important data for the B&R2003 PCC System. Hardware possibilities,
expansion possibilities with RIO and CAN I/0.

B&R Automation Target 2005
The most important data for the B&R2005 PCC System. Hardware possibilities,
expansion possibilities with expansion and RIO.

B&R Automation Target 2010
The most important data for the B&R2010 PCC System. Hardware possibilities,
expansion possibilities with expansion and RIO.

B&R Automation Target Logic Scanner
The combination of an IPC and LS251 results in a very powerful device for
visualization and control tasks.

B&R Automation Target TPC2xxx
The most important data and hardware possibilities.

B&R Automation Target TPC5xxx
The most important data and hardware possibilities.

Training ASPROG Page 4.2

Automation B&R Automation Studio™ 4. B&R Automation Targets

2 B&R AUTOMATION TARGET

B&R Automation Target refers to the
hardware platform, where B&R Automation
Runtime is running.

This can be a B&R2003, B&R2005,
B&R2010, IPC with Logic Scanner, IPC with
AR B&R Automation Runtime (AR010).

AN

Possible Automation Targets:

Training ASPROG Page 4.3

Integrale . a
Automation B&R Automation Studio™ _

3 B&R AUTOMATION TARGET 2003

3.1 Main Unit

e The B&R2003 is used as an intelligent terminal because of ist structure
and connection technology.

e You can select between the intelligent PCC version and the unintelligent
remote I/O version which reduces cabling costs.

e The special terminal blocks, which have separate terminals for signal,
ground and supply, allows fast and easy cabling.

e The combination of different screw-in modules on a CPU or analog
interface module guarantees the highest degree of modularity and the
smallest size.

CPU
Interface CPU I/0 bus with secure data transfer; max. 8 logic modules

CPU 1/0 bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.2: Module rack + CPU

Automation B&R Automation Studio™ 4. B&R Automation Targets

3.1.1 Power Supply

CPU / CAN Bus Slave Module / RIO Slave Module

Supply voltages in the DC range from 18-30V and in the

AC range from 82-264V, 47-63Hz. The power supplies are protected on the
primary side by a fuse and on the secondary side by an internal current limiter.

3.1.2 Operating System

All B&R Automation Targets are compatible with regard to operating system
functions and programming. A modem capable RS232 and a CAN interface are
available.

3.1.3 Online

The first three interfaces can be used as online interface by the operating as default.

3.1.4 Application Program Memory

The application memory is on board. SRAM and FPROM are available as memory
media. The SRAM is used for program development. The FIXRAM as part of
SRAM for data that must remain after a cold start. The FPROM is used to store the
operating system and completely tested projects including documentation.

3.1.5 I/O Modules and Terminals

The B&R2003 system offers a palette of

Digital Modules Relay or transistor version
Analog Modules 0-20mA and 10V ... Resolution: 12Bit
PT100/FeCuNi ... Resolution: !/, or 1/,7,°C

Interface and Counter Modules

Training ASPROG Page 4.5

Integrale a B a
Automation B&R Automation Studio™ 4. B&R Automation Targets

3.2 Expansion

3.2.1 RIO

The B&R2003 can be used as Remote I/0 Slave for long distances, in a 1200m
segment, with 3 repeaters up to 4800m and provides very fast communication, up
to 2MBaud. The connection is made using RS485 twisted pair lines.

RIO
SLAVE I/0 bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.4: Module rack + RIO

3.2.2 CANI/O

The B&R2003 can be used as master and also as slave for CAN I/O expansions.
The maximum distance extends over 1000m. The max. transfer speed is S00kBaud.

The connection is made using a
3 conductor CAN cable.

The CAN bus slave module has ist own configuration memory for CAN node
parameters. If this memory is not used, the node is started using the standard
configuration.

CAN
SLAVE I/0 bus with secure data transfer; max. 8 logic modules

1 2 3
Fig. 4.3: Module rack + CAN I/O

3.2.3 Networks

e CAN with multimaster network
e B&R NET2000 as master/slave network with slave cross traffic
e ETHERNET to connect with higher level systems

Training ASPROG Page 4.6

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

3.3 CAN I/O Projects

To work with CAN I/0, a EX470 module must be inserted in the CPU.

i B&R Automation Studio - [Can_2003.gdm [Project]] =]

I File Edit Miew [nsett Open Project Object Tool: Window 2 ;Iilél
wHd = > X F0 S SEA D 22|
Model no. | 5t Software | Logbook CA&N 170 |TF'U | Desciiption |
H’* CAN_2003 Slave Module Mode Mo, | Description
f} 2003 BP -
B |—=,9t 7EX4T050-1 2000 CAN 140 Slave, 244DC
L 7DN3e7 01 [Velete
& 7001357 0z
g 03 (E{ei e .
§ 04 Froperties. ..
B TAF101.7 1
A, TAI354T 11
A, 7A03827 1.2
b 13
by 1.4
oL FDI435.7 2
ok TDO4357 3
_g 4
EFEE 2003 CAM 10 BP
|5 7EX470.501 0
=L FDI435.7 1
ok 7DO4357 2
_ﬁ]
4 | »
For Help, press F1 [|OFFLINE 4

Fig. 4.5: Inserting a CAN slave

£y B&R Automation Studio - [Can_2003.gdm [Project]] I [=)

I File Edit “iew Insett Open Project Object Tools Window 2 _Iﬁllél

EHG ua|nm|xt|wa@m|@|a@@|?|

Model o {
D5 CAN_200 Select CAN 1/0 Slave Module EHE :I
& Module Selection List:
M odel no. I Description I
= 2003 2003

|- 7E:270). 201 N 1/0 Slave, 24VDC

150-1 ¢ [DC
L ?EX??D 50-1 EAN IJD Slave, 120/230 WAC
= 3000 2000
2/1045.00 Servo Amplifier 3*400-4600 4,54
a/1030.00 Servo Amplifier 3*400-4600 3,04

Operation:
& Inzert Module) Beplace Modile
< Back I Mest = I Cancel
4| | »
For Help, press F1 [Line 1 of 3 [|OFFLINE 4

Fig. 4.6: CAN I/O slave module selection dialog box

Training ASPROG Page 4.7

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

In order for the CAN I/O master to access nodes, the node number on the module
has to correspond to the node number in the configuration.

87 B&R Automation Studio - [Can_2003.gdm [Project]] = =]
_r File Edit Yiew Inset Open Proect Object Tool: “Window 2 _Iﬂlﬂ
DeEal/Ea)s = xEld B4 as o]
Wiaekl LT U = TR e L.
X
e CAN_Z003 Module Parameter EHE :I
B tModule: Ex470
Sypstem: 2003
Tvpe: CaM 140 slave
Model number: 7EX470.50-1
Module address: none

Backplane number: none

CAN Bus number: nore

Erter node number: I

Thiz number must corezpond with the
dial zwitch zetting on the module

< Back I Mest » I Cancel

4| | »
For Help, press F1 [Line 1 of 3 |OFFLINE .

Fig. 4.7: CAN node number dialog box

i B&R Automation Studio - [Can_2003.gdm [Project]] =]
I File Edit “iew Insett Open Project Object Tools Window 2 = Iﬁllﬂ
DedallEels = xelr s Baas oz
Madel no. I Slat 1/0 I Descriptionl
El':“ CAN_2003 Mame | Data T_l,lpel P Mame I Femark.
T 200 BP BOOL | HiLimitTank A, 24VDC
SHT) TCP474.60-1 0 BOOL LaLimitT ank, 24, 2400
°L 7DN3ETF 01 |BOOL b
b D017 02 digital input 04 BOOL 24, 244DC
9 03 —
5 04 digital input 05 EOOL 28, 2400
ks Taei0r e 1 digital input 06 BOOL 24, 24%DC
_,' : digital input 07 BOOL 24, 24DC
e 7DM4357 2 digital inpuit 05 BO0L 24, 24\DEC
-5k 7004357 3
—
EFUE 2003 CaM 140
|54 7ER470.50-1
L) OO 7
—5 k]
4 | 3
For Help, press F1 [Line 1 of 3 [|OFFLINE 4

Fig. 4.8: Defining DI variables on a CAN slave

Training ASPROG Page 4.8

Automation

B&R Automation Studio™

Working with CAN 1/O (continued)

4. B&R Automation Targets

i B&R Automation Studio - [Can_2003.gdm [Project]] =]
I File Edit Yiew Inzett Open Projpct Object Tool: Window 2 | ﬁ
0= &3 x = ?
Model no. | Slat 140] D escription |
= ':'* Cam_2003 Mame | Data T_l,lpe| Ff Mame | Remark.
TS 2008 BF digital output 01 BOOL AlamHiTank, 24, 24DL
SHiTl TCP474.604 0 digital autput BOOL AlarmLaT ank C
oh 7DN3ET 01 [BOOL b
b 7001357 nz BOOL 24, 2400
5 03
-J 04 digital output 05 EOOL 24, 2400
_;iil 741017 1' digital output 05 BOOL 28, 24DE
pl : digital output 07 BOOL 24, 2400
e 7DI4357 2 digital autput 03 BOOL 24, 24DC
-k TDO4357 2
L5 4 digital input (07 BOOL 24DC
SEUC 2003 CaM 140 EP digital input 02 BOOL 24400
|- =% 7Ex470.501 i} digital input 03 BOOL 24%DC
| = 1 digital input 04 BOOL 2400
digital input 05 BOOL 24%DC
diital input 05 BOOL 24DC
digital input 07 BOOL 24400
digital input 03 BOOL 2400
4| | 3
For Help, press F1 Line 1 of 3 OFFLIME

Fig. 4.9: Defining DO variables

Set the “scope” in the pop-up menu so that the relationship between variable and
hardware is immediately clear.

ﬁ“ B&R Automation Studio - [can_io_t.5RC [Ladder Diagram]]
E] File Edit “iew Inset Open Project Ladder Object Tool: ‘Window 7 | ﬁ
DEHE x o & ?
1 b Aok ArE sk Rk O}) {sh (R (P A6} G} | e g | TR (D:| 4 > 4 ¥
N
oo —
Inzert Mebwark
HiLimitTank AlarmHiTank
globaliZ311.1.1 globalf2C31 1.2
| | f
11 L]
ooz
LoLimitTank AlarmHiTank
globaldZ3a 112 glohali2Cs1.1.2.1 Tupe
| | f
[L]
Fiemark.
Froperties... .
For Help, press F1 Met1, Ln 1, Col 2 OFFLINE

Fig. 4.10: Task with CAN I/O variables

Training ASPROG Page 4.9

Automation

B&R Automation Studio™

Working with CAN 1/O (continued)

4. B&R Automation Targets

If the task is compiled and transferred to the controller, the additional drivers are
also automatically copied in the “System” area.

i B4R Automation Studio - [Can_2003.gdm [Project]] =]
I File Edit “iew Inzett Open Projpect Object Tool: Window 2 _|ﬁ'|5|
DeEdd =)o - XEfes B4 ao ol
Model no. | Siat || Software | Logbook | CaM 140] TPU | Description |
E‘;‘“ Cam_2003 todule Name I Wersion I Transzfer to I Size [bytes] I
f—}g =z CFU
T i o Cyclic #3 - (100 ms)
Qo 7DI1357 01 L can_iot V000 UserRAM 444
b 7001357 0z @ Soetem
: 0.3 (@l CP474000 v 400 UserROM 7052
. o4 spscont v 210 UserROM 804
R TAFIOLY 1 canio User ROM
7, 7AI547 1 Jl untime Y101 UserROM 5708
A, 7A03627 12
] 13
] 1.4
L=l 7DI4357 z
-5k 7O0435.7 3
_g 4
EFYE 2003 CAM 140 EP
5% FER470.50-1 0
oL 7014357 1
=) 7D0435.7 z
_ﬁi k]
1 |
Far Help, press F1 |Lire 7 of & [COM1 |OFFLINE i

Fig.

4.

11: System area with “canio” master

Training ASPROG

Page 4.10

Automation B&R Automation Studio™ 4. B&R Automation Targets

Example

e Read an analog input from the CAN 1I/0 and output it somewhere else.
e Watch the LEDs to see when the analog values do not change
e Watch the LEDs to see when the analog values change
e Remove the CAN cable and watch the output

Project Name: can_2003

LAD Name: av_can

Resource: C#3

Training ASPROG Page 4.11

Schulung / Training

Automation B&R Automation Studio™ 4. B&R Automation Targets

4 B&R AUTOMATION TARGET 2005

4.1 Main Unit

e The system performance is is exceptionaly high because of cooperation
between the processors on the CPU and parallel processor capability.

e The parallel processors extend the performance palette of this system in
various directions, e.g.: very fast I/O in the ps range, interface expansions as
well as positioning and CNC applications.

e Expansions are possible using local expansions, remote slaves for longer
distances up to 4800m or network and field bus system connections, e.g.:
CAN.

4.1.1 Backplane

A backplane can have a maximum of 15 slots.
Slots that are not used should be covered by dummy modules.

4.1.2 Power Supply

Supply voltages in the DC range from 18-30V and in the

AC range from 82-264V, 47-63Hz. The power supplies are protected on the
primary side by a fuse and on the secondary side by an internal current limiter.
The power supply is always on the outer left of the backplane module.

4.1.3 CPU, User Memory and Parallel Processors

The high performance is reached using a processor with integrated RISC. All PCC
systems distinguish themselves by their real-time capable, multitasking operating
system. SRAM and FPROM are available as application memory. The user is
provided a modular IF concept. The interfaces can be switched using software and
be operated as either online or data interrface.

Training ASPROG Page 4.12

Automation B&R Automation Studio™ 4. B&R Automation Targets

4.1.4 Configuration Possibilities

Parallel processors are special features of the B&R2005 system which can be used
as a CPU if no CPU is inserted.

‘‘‘‘‘

| o

Fig. 4.13: Rack with CPU and parallel processors

4.1.5 I/0 Modules and Terminals
The B&R2005 system offers an extensive palette of:

Digital Modules Relay or transistor version
Analog Modules 0-20mA and +10V Resolution: 12Bit
PT100 / FeCuNi / NiCrNi ... Resolution: '/ jor '/ °C

1/ oF
Interface, Counter and Network Modules

Positioning and CNC Modules

Training ASPROG Page 4.13

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

4.2 Expansion
The B&R2005 can use both local and remote expansion.

4.2.1 Expansion

The expansion system is used for local expansions. The expansion master is an
EX350 in the power supply. The expansion slave is a power supply. With local
expansions, there can be a maximum of 2m between the individual stations and up
to 4 B&R200S expansions, max. 52 IO modules can be used. The expansion cable
is used as transfer media.

4.2.2 RIO

The remote I/0 system consists of a remote I/O master, the system module EX150,
and a remote I/O slave, as power supply. Remote networks can have max. 32
stations in a segment and can be used for distances up to 1200m. The transfer rate
that can be obtained is 2 MBaud. Using 3 repeaters, a max. of 121 stations can be
connected at a distance of 4800m.

RS485 twisted pair is used as transfer media.

4.2.3 CANT/O

The CAN I/0 system consists of at least one master, as CPU or parallel processor
with CAN interface, and up to 63 CAN slaves, as B&R2003 with CAN bus slave
module. The maximum expansion can have 63 stations. Several masters can be
used. Distances up to a max of 1000m can be reached. The max. transfer rate is
S500kBaud. A 3 conductor CAN cable is used as transfer media.

4.2 .4 Networks

The networks supported include the following networks:

e ETHERNET

e PROFIBUS
e B&R NET2000
o CAN

e Frame Driver

e Connections to systems from other manufacturers

Training ASPROG Page 4.14

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

4.3 RIO Projects

In order to work with B&R RIO, a 3EX150 RIO master must be installed on the
rack. A RIO slave can be connected there.

i B4R Automation Studio - [Rio_2005.gdm [Project]] =]

I File Edit Yiew Inzett Open Projpct Object Tool: Window 2 _|5||5|
EEH@ . Eeo o (X EF [L SE D D2
Maodel no. I Slat Remoate /0 | Descriptionl
E‘R’* RI0_2005 Slave Module Slave Backplane | Slave no. | Description
- 2005 BFO :
ok 3PSTHAS P L3 3EX25060- Remote 10 Slave
= | F Delete
[=Hi"] 3CPZE0.E04 142 e
t-t;; AFEFLS 11)
g 12 Properties...
=L 3014766 3
% 3004806 4
-7, 3813506 a
A, 203506 [
5L 3DM4TEE 7
-5 a
_g q
R 2005 Remote 1/0 BPO
ok 3PS7349 P
i) 3EX250.601 F
_g 1
4| | »
Far Help, press F1 [[coM1 [ePeso w2io RUN | [

Fig. 4.14: Inserting a RIO slave

The settings used for the configuration of the RIO stations can be found in the
shortcut menu item RIO Properties.

&} B&R Automation Studio - [Rio_2005.gdm [Project]] O
I Fil= Edit “iew Inzett Open Project Object Tool: ‘Window 2 _Iﬁllél

EHG ua|nm|xt|wa@m|m®@@|?|

Hadel no Select RIO sl dul

E|—‘5 ._2005 Module Selection List:
ok 3PST
—5 odel no. I Description I
B 30P2 = 2003 2003
£ 31 7EX47750-1 Remoate /0 Slave, 2480DC
|: g FEXFFEA01 Remote 1/0 Slave, 110/230WAC
: = 2005 2005 _
L=L 2Di4; - 0-]
_"b an0d i 901 emotela’D Slave
Tk IPSEIN.A0-1 5OW. T10VALC, Remote 140 Slave
3IPS791.90-1 B0, 230WAC, Remote 140 Slave
= 200 200
L 2Ex200501 Busz Controller Remate 140 Slave

Operation:
& Inzert Module) Beplace Modile

< Back I Mest = I Cancel

4 | »
For Help, press F1 | [COMT [CP2E0 w210 |RUN 7

Fig. 4.15: RIO I/O slave module selection dialog box

Training ASPROG Page 4.15

B&R Automation Studio™

Automation

Working with B&R RIO (continued)

4. B&R Automation Targets

In order for the RIO master to access the slave nodes, the node number on the
module has to correspond to the node number in the configuration.

l‘fn“ B&R Automation Studio - [Rio_2005.gdm [Project]]
I File Edit “iew Inset Open Project Object Tool: “Window 2

=[Ol x]
=l2] x|

211N ammx:ma@mlm&@wﬂ

Model o e

B% -2905 Module: EX250
ok P57 Spstem; 2005
E—;??J P2 Tupe: Remate 1/0 slave
|:'tﬁ: Al Model number: 3EX250.60-1

b Module address: 16
Y Backplane number: none
ok 3004 Master nurmber: nane
-7, 34las
::il" 33213! Enter slave number: I

Thiz number must comespond with the

dial switch zefting on the module

< Back I Mest > I

Cancel

| |

For Help, press F1

[CaM1

[EP260 V210 [RUN

|

Fig. 4.16: RIO node number dialog box

& B&R Automation Studio - [Rio_2005.gdm [Project]] - O] =]

I File Edit Yiew Inzert Oper Projpct Object Tool: Window 2

=l®] x|

=Eg ¢ hélnm|><l‘|ﬁ’d@l¢|%l&®®|‘?|

ER—

Operation:

Madel Tr 1~ oam 1
DET = RIO_2005 Select power supply module [2]]
Iy _
EH-S '_,'iDD??PS? Module Selection List:
_g Model no. | Description |
=Ri® 3CP2 3P34E5.9 S0, 24vDC
A3 3PSES4.9 S, 1 200MAC
t ' i SNE C
E
oL 30147
-k 3004
7, 303E

& Insert Module

) Beplace Modile

< Back I Mest » I

Cancel

4| | »

For Help, press F1 [|COM1

[CPZ60 ¥210 [RUN

=

Fig. 4.17: Selecting the power supply for the RIO slave module

Training ASPROG

Page 4.16

Automation

Working with B&R RIO (continued)

B&R Automation Studio™

Assigning variable names for inputs and outputs.

i BXR Automation Studio - [Rio_2005.gdm [Project]] H[=

4. B&R Automation Targets

_r File Edit Yiew Inset Open Proect Object Tool: “Window 2 | ﬁ
O & X & ?
Model no. LSt =] 170 | Description]
= ':.“ RI0_2005 Mame | Data T_l,lpe| P Marne | Remark
T 2005 BPD digital imput 01 BOOL gDRIO_PumpStat | Tms switching delay
sk IP57949 P digital input 02 BOOL aDiRI0_PumpStop | 1ms switching delay
3 F digital input 1 ing delay
-+ 3CP260.60-1 142 digital input BOOL Tz switching delay
|:‘%'.,= 3IFEF1S 1.1 — o
- igital inpu mz switching delay
12 digital k05 BOOL 1 tching del
| = an14765 3' digital input OB BoOOL Tz switching delay
o i digital input 07 BOOL Tz awitching delay
- 3004806 4 digital input 07 BONL Tms switching delay
-7, 3413506 5
A, 03506 3 digital input 09 BOOL Tz switching delay
7% 3DM47EE 7 digital input 10 EOOL Tmz switching delay
% 3EX150.60-1 a digital input 11 BOOL Tms switching delay
| = q digital input 12 BOOL Tz awitching delay
=HeR 2005 Remerel/0 - BFO el input 13 BOOL Tms switching delay
ek PS7343 P digital input 14 BO0L Tms switching delay
) 3EM250.601 P digital input 15 BOOL s switching delay
-5 digital input 16 BoOOL Tz switching delay
L) OO E z]
L7, 3413506 3
—'-FL 403506 4
| 5 hd
4| | »
For Help, press F1 COM1T JOFFLINE
Fig. 4.18: Assigning I/O variables

i“ B&R Automation Studio - [rio_pump.5RC [Ladder Diagram]]
ﬁ File Edit “iew Insett Open Project Ladder Object Tooks Window 7

XE|E gD

s

(% I: | 4« % 4 ¥

Inzert Metwork,

O = &
1 F A b Nk b ()) (s} (R} R} () R | sooe e | T

0001

gDiRIC_PumpStart gDoRID_Pump

globaliRs11 4.1 olobali@Rs1.1.2.1
|p | fcl
1Pl 8}

0oz

gLiRIC_PumpStop gDoRID_Pump

globallRS11.1.2 olobali@Rs1.1.2.1
I nl frd
1M LR}

For Help, press F1

Met1.Ln1, Col 2

COM1 |OFFLINE

Fig. 4.19:

Task with B&R RIO variables

Training ASPROG

Page 4.17

Automation

B&R Automation Studio™

Working with B&R RIO (continued)

4. B&R Automation Targets

If the task is now compiled and transferred to the controller, the additional drivers
are also automatically copied in the “System” area and also transferred to the target.

& B&R Automation Studio - [Rio_2005.gdm [Project]] H=
_r File Edit Yiew Inset Open Proect Object Tool: “Window 2 _Iﬂlﬂ
DSR@| e [XE|F SSE v 92|
Madel no. I Slot = § | Software | Log bookl Description
El"’:“ RI0_2005 Module Narme Werzion | Tranzfer to | Size [bytes) I
- 2005 BFO S U
ok 3FS794.3 P & Cyclic #1-[10ms]
-3 Tio_purnp Y 0.00 zer Rt (315
=g “ Tyt
st
t"ﬁ ELEE N CL | sysconf V210 UserROM 800
“ %DM?BE 3 o] runtime .01 User ROM 9703
< 3004806 . 1} o lib User ROM
A, 3813506 5
3, 2603506 G
-5 3DMATEE 7
24 3EX150.60-1 8
—5 q
EFYR 2005 Remate |40 BPD
ol aPs7a4.9 P
Lol 2Ex250.60-1 P
29 5L 3014766 1
] L=}, 3004806 z
% L5l 3813506 3
? H#, 303506 4
o | 5 |
4| | 3

For Help, press F1

|Line 7 of 7

[COM1

[CPZ60 ¥210 [RUN

=

Fig. 4.20:

System area with “rio_1lib”

(Remote I/O Library)

Training ASPROG

Page 4.18

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

Example
e An output is activated when a positive edge occurs on an input.
e The output is deactivated again when a negative edge occurs on a second
input.
e Break the connection to the slave by unplugging the cable. What happens to
the slave? What happens to the master?
Project Name: rio_2005
LAD name: rio_pump
Resource: C#2

Training ASPROG Page 4.19

Schulung / Training

Automation

B&R Automation Studio™ 4. B&R Automation Targets

S B&R AUTOMATION TARGET 2010

5.1 Main Unit

The high end system of the B&R2000 series.

The system performance is a result of cooperation between several
processors and the CPU,

° I/0 Processor to read from / write to 10 simultaneously
° RISC to service interfaces simultaneously
° DPR Controller to mask / negate digital I/O points

the modular application memory which can be sent in for a project update if
a modem service is not available and parallel processor capability.

Up to 99 modules can be installed on the I/O bus. Each module shows a
separate module number on the status display. The terminal blocks are
monitored and directly coded to the module which prevents mix-ups when a
large number of I/0O modules are used.

The parallel processors extend the performance palette of the system in
various directions:

° IPs, as intelligent peripherals: drum sequencers,
injection molding applications

° PPs, as parallel processors: Multiprocessor,
interface expansions, etc.

The supply principle allows a system with redundant power supplies to be
created.

Expansions are possible using local expansions, remote slaves for longer
distances up to 4800m or network and field bus system connections.

Training ASPROG Page 4.20

Automation B&R Automation Studio™ 4. B&R Automation Targets

5.1.1 Backplane

The system has a modular system and I/O bus.

An I/0O bus segment can be up to 20 slots long.

The system bus and the I/0O bus both require a terminating resistor.
Slots that are not used should be covered by dummy modules.

5.1.2 Power Supply

Supply voltages in the DC range from 18-30V and in the

AC range from 82-264V, 47-63Hz.

The power supplies are protected on the primary side by a fuse and on the secondary
side by an internal current limiter.

The power supplies are then connected to the 1/0 bus.

Supply redundancy can be obtained by using twice as many power suplies as
needed.

The 24V secondary voltage can be switched forward to a terminal using the toggle
switch on the AC power supply, PS740.

Training ASPROG Page 4.21

Automation B&R Automation Studio™ 4. B&R Automation Targets

5.1.3 CPU, User Memory and Parallel Processors

The high performance is reached using several processors (main processor, RISC,
I/0 processor and DPR controller). All PCC systems distinguish themselves by their
real-time capable, multitasking operating system . The application memory
(SRAM and FPROM) is modular and can therefore also be sent in if a modem
service is not available.

The CPU is available in different versions. The only differences between the CP100
and the CP104 are the interfaces. Depending on the CPU, an RS232, a modem
capable RS232 and RS422/485 interface or an RS232, a modem capable RS232 and
CAN interface are available. The CP200 has a much higher calculation
performance,4 to 8 times, and more interfaces, an RS232, a modem capable RS232,
a CAN and RS422/485 interface.

The interfaces can be switched using software and operated as either
online or data interface.

Fig. 4.21: B&R2010 rack with system and I/O bus

5.1.4 I/0 Modules and Terminals
The B&R2010 system offers an extensive palette of:

Digital Modules Relay or transistor version

Analog Modules 0-20mA and £10V ... Resolution: 12Bit
PT100 / FeCuNi/NiCrNi ... Resolution: '1,,0r',°C

Interface counter modules and network modules
Multifunction module, drum sequencer,
Positioning module, parallel processors, interfaces

Training ASPROG Page 4.22

Integrale A .
Automation B&R Automation Studio™

5.2 Expansion

5.2.1 Expansion

4. B&R Automation Targets

The B&R2010 can use both local and remote expansion.

The expansion system is used for local expansions.
The expansion master is an /O module, EX302.

The expansion slave, EX301, is the first module in the expansion station and
must be inserted on a terminated backplane, BP202.
Local expansions can have a max. of 20 modules and there can be a max. of 2m
between the individual stations.

Up to 9 B&R2010 expansions with a max. of 99 modules can be used.
The expansion cable is used as transfer media.

Expansion Masfer

PS 1/O Modules

EXPANSION

Expansion Slave
PS /O Modules

§

(11
(i

Expansion Master

| Max. 2 Meters

Max. 2 Meters

Expansion Slave

PS 1/O Modules

Ik

Expansion Master

Up to 9 expansion stations

Training ASPROG

Page 4.23

Automation B&R Automation Studio™ 4. B&R Automation Targets

5.2.2 RIO
Two different remote systems can be used, Remote I/0O and CAN 1/0.
The remote I/0 system consists of a remote I/O master, the system module EX100,
and a remote 1/0 slave, EX200.
The remote 1/0 slave is the first module on the remote station and must be installed
on a terminated backplane, BP202.
Remote networks can have max. 32 stations in a segment and can be used for
distances up to 1200m. The transfer rate that can be obtained is 2 MBaud.
A max. of 121 stations can be connected at distances up to 4800m using a max. of 3
repeaters.
RS485 twisted pair cabling is used as transfer media.
Rs485 Network
Remote Master
CPU|
— } Max. 32 stations in segment (RS485)
1200m in (incl. RIO Master and Repeater)
RS485 Segment
-> 30 RIO Slaves
. — Max. 32 stations in segment (RS485)
12001 .
RS48? Igegment } (incl. Repeater at start and Repeater at end) 198 Red85 stations:
-> 30 RIO Slaves
il — 1 RIO Master
- 3 Repeaters (2 stations each)
I 121 RIO Slaves
. T Max. 32 stati i t (RS485
;28(2082 ISne gment (i:c)i. Re;eaatlg1 Ztlth?tgg:\ZnREepeater)at end) 4800m
-> 30 RIO Slaves
1200m in — Max. 32 stations in segment (RS485)
RS485 Segment (incl. Repeater at start)
| -> 31 RIO Slaves

Training ASPROG Page 4.24

Automation B&R Automation Studio™ 4. B&R Automation Targets

5.23 CANT/O

The CAN I/0 system consists of at least one master. A CPU or parallel processor
with CAN interface, and up to 63 CAN slaves, as B&R2003 with CAN bus slave

module. The maximum expansion can have 64 stations. Distances up to a max of

1000m can be reached. The max. transfer rate is 500kBaud.

A 3 conductor CAN cable is used as transfer media.

5.2.4 Networks

The following networks are also supported for data transfer:

e ETHERNET

e PROFIBUS

e CAN

e B&R NET2000
e Frame Driver

e Connections to systems from other manufacturers

Training ASPROG Page 4.25

Integrale . . .
Automation B&R Automation Studio™ 4. B&R Automation Targets

6 B&KR AUTOMATION TARGET LOGIC SCANNER

6.1 Main Unit

e Combination of control and visualization tasks compact in a single device.
e [PC5xxx handles visualization tasks.

e [.S251 handles control tasks and is completely independent of the IPC5xxx
operating system.

e High speed data exchange between LS251 and IPC5xxx via the PCI bus.

e Expansion possibilities exist for IO using RIO or CAN to connect to a
network.

 EEREEZRERERRERRRARANLNM

o

=

 — —
I LTV

e ram o >

6.1.1 PCI Bus

The PCI bus is connecting element between the LS251 and IPC5xxx. It is used as a
high speed data exchange media.

6.1.2 Power Supply

The LS251 uses either the [IPC5xxx power supply directly or an external supply
(independent of the IPC5xxx supply) provided by the LS079 expansion card.

6.1.3 CPU, Application Memory

The high performance is reached using a processor with integrated RISC. All PCC
systems distinguish themselves by their real-time capable, multitasking operating
system . SRAM and FPROM are available as application memory. The user is
provided a modular IF concept, with the LSO71. The interfaces can be switched
using software and operated as either online or data interface.

Training ASPROG Page 4.26

Automation

6.2 Expansion

B&R Automation Studio™

4. B&R Automation Targets

The LS251 can be connected to I/0 using RIO or CAN

6.2.1 RIO

The LS251 has a RIO interface onboard for a connection to IO modules from the

B&R 2003/2005/2010 families.

6.2.2 CAN IO

The LS251 has a CAN interface onboard for a connection to IO modules from the
B&R 2003 family.

MASTER:
IPC with LS251 (Slot PLC)

E:R IPC 5000

IS ==

®
B

© Immaommua0m >

3€CoeD =P OO

RIO or CAN

Slave

Power Supply with
CAN or RIO Nodes

(=B =] = =

s

e

18

L

1/0 Modules

Power Supply with
CAN or RIO Nodes

= =

= = 1= =

e
A llet. 0

1/0 Modules

Training ASPROG

Page 4.27

Automation B&R Automation Studio™ 4. B&R Automation Targets

7 B&R AUTOMATION TARGET IPC2XXX

7.1 Main Unit

e Increased processor performance with support of an FPU
e Large supply of memory with possibility for file management

e Compact design with flexible network connections

“ |||||||"lII|| y . ! j’"ifd‘
) imm =
=l mm

7.1.1 Power Supply
Integrated DC power supply with a supply voltage of 24V.

7.1.2 CPU, Application Memory

The IPC2xxx, having an Intel 486/DX5 with FPU and memory in the megabyte
range, provides high performance. The user now also has PC resources, such as
floppy disk and hard disk with a file management system for effective development
of applications. The interfaces can be switched using software and operated as
either online or data interface.

7.1.3 AutomationRuntime

To use the IPC2xxx as AutomationTarget, AutomationRuntime AR102 is installed
as real-time operating system from a set of diskettes. These installation diskettes are
created by the AutomationSoftware install kit.

Training ASPROG Page 4.28

Automation B&R Automation Studio™ 4. B&R Automation Targets

7.2 Expansion

7.2.11SAT/O

With the LS301.4 card, 16 DI, 16 DO, 4AlI, 2A0O can be connected directly to the
IPC2xxx via the ISA bus.

7.2.2 CAN IO

With the LS172.4 card, B&R CAN IO can be connected to the IPC2xxx via the ISA
bus. The LS172.4 has two CAN interfaces.

7.2.3 Networks

e CAN
e FEthernet
e Serial

Training ASPROG Page 4.29

Automation B&R Automation Studio™ 4. B&R Automation Targets

8 B&R AUTOMATION TARGET IPC5XXX

8.1 Main Unit

e Increased processor performance with support of an FPU.
e Large supply of memory with possibility for file management.

e Compact and modular design with flexible network connections.

o o

| coovoO®®

i oovoOP®
vovee 1 || e
oo

8.1.1 Power Supply

Integrated AC or DC power supply. 24V DC supply voltage and 100-240V AC
supply voltage, 47-63Hz.

8.1.2 CPU, Application Memory

The IPC5xxx, having a Pentium processor with FPU and memory in the megabyte
range, provides the highest performance. The user now also has PC resources, such
as floppy disk and hard disk with a file management system for effective
development of applications. The interfaces can be switched using software and
operated as either online or data interface.

8.1.3 AutomationRuntime

The following AutomationRuntimes are available for use with IPCS5xxx as
AutomationTarget:

e ARI10S5 - embedded. The AT only executes control tasks.

e ARO010 - NT. The AT executes high priority and deterministic control tasks.
NT is handled in the idle time which makes it possible to run the
visualization on the same target.

AutomationRuntime is installed as real-time operating system from a set of
diskettes. These installation diskettes are created automatically by the
AutomationSoftware install kit.

Training ASPROG Page 4.30

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

8.2 Expansion

8.2.1ISAT/O

With the LS301.4 card, 16 DI, 16 DO, 4AI, 2A0 can be connected directly to the
IPC5xxx via the ISA bus.

8.2.2 Expansion

With the LS191 card, B&R 2005/2010 IO can be connected to the IPC5xxx as local
expansion via the PCI bus.

8.2.3 CANIO

With the LS172.4 card, B&R CAN IO can be connected to the IPC5xxx via the ISA

bus. The same possibilities are offered by the LS172.6 using a faster PCI bus
connection.

8.2.4 Networks

e CAN

e FEthernet

e Serial
MASTER:

Automation Runtime

B IPC 5000

p— .

i B (-
* INUUODNINN] © 0P o= . L]
sgeDoe =)

EXPANSION Slave CAN Slave

Power Supply with
CAN I/ Nodes

o o o = (= —]

PS with Expansion Slave
| 1/0O Modules
‘ EEH 0%

o |le

1/O Modules

Training ASPROG Page 4.31

Integrale —_ . ;
Automation B&R Automation Studio™ 4. B&R Automation Targets

9 B&R2000 OVERVIEW

Remote Master Network Expansion Master

CPU+CAN

REMOTE
EXPANSION
Remote Slave Expansion Slave Expansion Master
V))
| Wﬂ } Fﬂ; [:W:ﬂ /
1/0 BUS
Max. 2 Meters
Max. 2 Meters
Power Supply with
Remote 1/O Slave
[[

IPC + AR

[

Network

Power Supply with
Expansion Slave

B

Up to 31 remote slave stations

with repeater 121

CAN
EXPANSION

Up to 4 expansion stations

CAN-Bus Slavemodul

CAN

bis zu 63 Server Stationen

Training ASPROG Page 4.32

Schulung / Training

Automation B&R Automation Studio™ 5. B&R Automation Net

B&R AUTOMATION NET

T OVERVIEW ..ottt 2
2 B&R AUTOMATION NET ..o 3
3 COMMUNICATION PRINCIPLES ..ot 4
4 ACCESS TO B&R AUTOMATION NEToooeeeeeeeeeeeeeeeeeeeeeeeee, 5
4.1 B&R Automation Net - PV ..o, 5
4.2 B&R Automation Net - Routingccoccveevviiennieeniieennne. 6
4.3 B&R Automation Net - INA Client FBKScoovvvueeeveiiienen. 9

Training ASPROG Page 5.1

Schulung / Training

Integrale N . "
Automation B&R Automation Studio™ 5. B&R Automation Net

1 OVERVIEW

B&R Automation Net
Overview of the communication model for B&R Automation Net and ist
components.

Communication Principles

Access to B&R Automation Net
The user can access Automation Net for visualization and for the programming
device via PVI. From the application, access takes place using INA Client FBKs.
Routing possibilities are offered which allow new solution methods for simple
handling of network tasks.

Training ASPROG Page 5.2

Automation B&R Automation Studio™ 5. B&R Automation Net

2 B&R AUTOMATION NET
AS
B&R Automation Net (AN) allows
communication between B&R Automation
Runtime, B&R Automation Target and also
AN other stations on the network. In general, B&R
AN represents a cloud of communication
between B&R and other components.
AR

Training ASPROG Page 5.3

Automation B&R Automation Studio™ 5. B&R Automation Net
3 COMMUNICATION PRINCIPLES

B \/ISUALIZATION

SIDMOS
UoloWIOINY

B&R Automation Net makes it possible for every communication station to
exchange and edit all types of program objects and/or process variable objects.

B&R Automation Net is:
e independent of the operating system used
B&R Automation Runtime,Windows 95/98/NT/2000, etc.

e independent of the media used
RS232,CAN,Ethernet,Profibus,Modem,Memory,etc.

e independent of the transfer protocol used
INA2000, NET2000, Mininet, etc.

Training ASPROG Page 5.4

Automation B&R Automation Studio™ 5. B&R Automation Net

4 ACCESS TO B&R AUTOMATION NET

Communication within AN can be transparent, but different interfaces must be used
at the end points where the information is actually processed on the respective
operating system.

Therefore, the corresponding access method is required for each operating system.

4.1 B&R Automation Net - PVI

The Process Visualization Interface (PVI) is a component of AN and establishes the
connection to the B&R Industrial PC’s environment as common interface for all
Windows based programs.

B&R
Automation

L

A /
A DDE >
Server
OPC
Server

PVI

Automation Net

PVI

Training ASPROG Page 5.5

Automation B&R Automation Studio™ 5. B&R Automation Net

4.2 B&R Automation Net - Routing

Routing generally refers to a connection between several PCCs for programming. Its
main task is forwarding data addressed on another PCC.

RS232

B[] Pee

Profibus —

The interface settings are made in AS using menu item
Extras: Options

Options
Orilire |
2%
— Online Configuration
Add... | Remiove |
-~ Device
Devicetype ISeriaI Froperties. .. |
Extra settings : I
Connection parameters :
Routing -
™ Enable remate connection Properties.. |
Ok I Canecel I

Fig. 5.1: Connection settings

Training ASPROG Page 5.6

Automation B&R Automation Studio™ 5. B&R Automation Net

4.2.1 Online Configuration
Select the online configuration for communication to the local PCC. Automation
Studio provides the following preprogrammed configurations:
e Serial = RS232
o CAN
e SHARED =LS251

Additionally, the user can save other, specific configurations under different names.

4.2.2 Interface

Here, parameters for the selected online interface can be defined in a dialog box.
The parameters can also be entered as text using “Extra Settings”.

4.2.3 Connection Parameters

Additional settings for the device parameters when using CAN, Profibus and TCP/
IP Ethernet.

e.g. node number for CAN or TCP/IP Ethernet

4.2.4 Target System Path

Settings for routing between controllers
e.g.: “/CN=CAN.3”

This setting means that a CAN connection will be created from the local controller
to the next controller. The ending “.3 is the set node number of the next station.

4.2.4 Activate Remote Connection

The user can make settings for a remote connection between PCs via TCP/IP.

Note
More than one routing path can be entered !!

Training ASPROG Page 5.7

Automation B&R Automation Studio™ 5. B&R Automation Net

Example

Create the network shown belong with the help of your trainer and establish
communication between the controllers and Automation Studio.

AS

ry

RS232

PCC 1 PCC 2
CAN

e C(reate the network
e Program a tasks with a toggle output

e Transfer and test the program

Project Name: rout_can
Task Name: toggle

Resource: ?

Training ASPROG Page 5.8

Schulung / Training

Automation B&R Automation Studio™ 5. B&R Automation Net

4.3 B&R Automation Net - INA Client FBKs

Today, many automation solutions use distributed intelligence. Tasks are distributed
over several automation targets. The connection between the automation targets is
made using Automation Net.

The communication services, such as reading or writing PVs, are already provided
to the programmer by Automation Runtime. This communication provided by Auto-
mation Runtime is called the INA Server.

Access of the communication services by the application takes place using function
blocks, INA Client FBKs.

With INA Client FBKs, PVs can now be read from or written to by another
automation target using their names via Automation Net. This makes exchanging
data between B&R controllers much easier and more transparent for the user.

Advantages of the INA Services:

e Connections are made by setting parameters and no longer need to be
programmed

e Complete performance of the INA2000 protocol
e Change the physics simply by changing the parameters

e Fast and simple use of network technologies without having to make extensi-
ve changes to source code

Training ASPROG Page 5.9

“automation B&R Automation Studio™ 6. Project Guidelines |

PROJECT GUIDELINES 1

L OVERVIEW ..ottt 2
2 PROJECT CREATIONooiiiiiiiiiiieniieiteteseeieete e 3
3 PROGRAMMING CONVENTIONScccooiiiiniiniiieeieneeeeene 4
BT IAENUIIET ..o 4
3.2 Data TYPES weeeeieieeiiieeeiie ettt 4
3.3 DIrectory StUCLUTEveeeeiiieeiiieeiiie e 4
3.4 Software Module Namesccccevvueinieniiinicnicnienieeee. 5
3.5 Task NAMES ...oovuviiiiiiiiiiiceieeecee e 5
3.6 Data Module Namescccoocueriiienieniiinieniccieeeieeecnens 6
3.7 Variable NaAmMESscccceeriiiiiiniiiiiinieeeceeeeeseeee e 7
3.8 Constant NamEeScccccevueevieriiiiiiinicnieeieeee e 10
3.9 Alias Process Variables for Function Blocks 11
3.10 Assigning Revision NUmbersccccevvveerrieeniieenneeennne. 11

Training ASPROG Page 6.1

Schulung / Training

“automation B&R Automation Studio™ 6. Project Guidelines |

1 OVERVIEW

For larger projects, it is important that uniform guidelines are followed during
development and programming.

This should make it easier for several programmers to work together on a project.

This should also make programs more clear for the programmer and for others. The
ability to expand and maintain the programs is improved considerably.

Project Creation
Short overview of the process of creating projects. This information also depends on
the branch and the respective projects, but can be used as a basis and adapted for the
project being created.

If guidelines already exist for projects, they should be followed !

Programming Conventions
This concerns assigning names to tasks and also variables. Variable names and
constant names are designed for 32 characters. These characters should be used in
as meaningful a manner as possible. Task names are limited to 8 characters. The
nesting depth for structures is limited to 16.

Notes on Literature

This chapter is a exert from the B&R application programming guidelines which is
described in detail in the appendix.

Further Literature:

Code Complete : A Practical Handbook of Software Construction
by Steve C McConnell

Paperback - 857 Pages (May 1993)

Microsoft Press;
ISBN: 1556154844

Training ASPROG Page 6.2

“automation B&R Automation Studio™ 6. Project Guidelines |

2 PROJECT CREATION

Details concerning the individual points can be found in Project Guidelines II

e Internal preliminary discussions
e C(reating a project
e Project discussions

e Software conception phase
Defining or adjusting the programming conventions

e Coding
e Testing
e Startup

e Documentation

e Archiving

Note
In this chapter, only the software conception phase will be looked at in detail.

Training ASPROG Page 6.3

“automation B&R Automation Studio™ 6. Project Guidelines |

3 PROGRAMMING CONVENTIONS

3.1 Identifier

AS is a programming tool that makes it possible to assign meaningful variable

names.
e Variable name 32 characters
e (Constant name 32 characters
e Task names 8 characters
e File names WIO5/WI98/WNT naming conventions
e Nesting depth for structures 16 levels

Programming conventions for B&R AutomationStudio are described in the
following sections.

They should be followed when creating software, during startup and also for later
software changes.

3.2 Data Types

In all programming languages supported by AutomationStudio, the
IEC Data Types should be used. Also ANSI C !!!

This simplifies changing to other architectures considerably because only the
platform specific sections have to be rewritten.

3.3 Directory Structure

As standard, AutomationStudio saves all source files in the CPU path for the
project.

With the programming language ANSI C, it is possible to create subdirectories for
source and include files which makes them much clearer.

. ./Cpu/SRC
. ./Cpu/INC

Training ASPROG Page 6.4

“automation B&R Automation Studio™ 6. Project Guidelines |

3.4 Software Module Names

3.4.1 General Information

During the software conception phase, the application is divided into smaller and
smaller units which provide the required functionality.

This type of software module should be a closed unit. It handles a certain task and
has a precisely defined interface to other software modules.

A software module can consist of one or more tasks and data modules.

The module concept should also be used for function blocks and functions.

3.4.2 Guidelines for Module Names

A module is defined using a combination of three characters.
This character combination can consist of letters and/or numbers.

The character combination is found in all elements that belong to this module such
as tasks, data modules, global variables, function block names and function names.

3.5 Task Names

It should be clear that a tasks belongs to a software module from its name. Task
names are presently limited to 8 characters and are defined as follows:

Abbreviation: | Description

mm__ Code for the module

ttttt Code for the task in the module

Tab. 6.1: mm_ttttt

To improve clarity, module and task identification codes should be separated by an
underline.

Example: mi_drv ... machine interface, driver

Training ASPROG Page 6.5

“automation B&R Automation Studio™ 6. Project Guidelines |

3.6 Data Module Names

Example

It should be clear that a data module belongs to a software module from its name.

In certain cases, it can be necessary to enter the memory type for the data module in
the name. For example: Backup copy in Flashprom, if the data module is written to
by the application.

Data module names are presently limited to 8 characters and are defined as follows:

Abbreviation: | Description

mm__ Code for the module
s Memory type
tttt Code for the data module

Tab. 6.2: mm_stttt

Prefix s Description
No entry
Eprom/Flashprom
Fix Ram

r Ram

Tab. 6.3: Memory type

mi_para
Data module in the MI module with the name Para, the memory type is not entered.

mi_xpara
Data module in the MI module with the name Para, which is in FIX RAM.

Training ASPROG Page 6.6

“automation B&R Automation Studio™ 6. Project Guidelines |

3.7 Variable Names

AutomationStudio differentiates between variables with the following scope:

e ¢lobal variables
e local variables
e (variables (see chapter ANSI C)

Variable names can have up to 32 significant characters.

Variable should always be defined with the smallest possible scope. When using
PCC global variables, very complex structures can easily be created which makes
the application logic difficult to understand. Additionally, PCC global variables
make it considerably more difficult to reuse and maintain codes.

As the size of the project increases, it becomes more important to be able to quickly
recognize the scope of variables. This can be made easier by using a type prefix
with variable names.

3.7.1 Global Variables

Applications for global variables:

e Communication between Tasks

e JO Connection to Hardware

Global variables are to be defined with “_ GLOBAL” in ANSI C.

Training ASPROG Page 6.7

“putomation B&R Automation Studio™ 6. Project Guidelines |

pttMMMnnnnnnnnn...

The separation of the sections can be shown using underlines or capitalization.

Abbreviation: Description
p Type prefix for
scope of the variable
tt Type of wvariable
MMM Code for the module

(only capitals and/or numbers)

nnnnnnnnn. . Variable name consists of letters, numbers and underline.
The name must begin with a lower case letter or an
underline.

Tab. 6.4: Names of Global Variables

Type Prefix p Description
g PCC global wvariable
None C local variable and local variables in IEC languages

Tab. 6.5: Description of the type prefix p

Type tt: Description

Di Digital input (BOOL)

Do Digital output (BOOL)

Al Analog input (INT)

Ao Analog output (INT)

P_ Pointer (only meaningful in “C”")

Tab. 6.6: Type description of variables

Example
IO Inputs/Outputs:

gDiHTGStart, gDoHTGStop, gAiHTGzyTemp, gAoHTGzyClock, etc.

Training ASPROG Page 6.8

“automation B&R Automation Studio™ 6. Project Guidelines |

3.7.2 Access of Hardware 10
The access ofhardware data points can occur in each software module exactly

once.

An exception to this is LAD programming. Here, inputs can be accessed more
often. Outputs can only be written to once.

For all other programming languages, the following is valid:

e At the beginning of the module, the hardware 1Os in the hardware data point
buffer are copied to the local module status structure.

e At the end of the module, the buffer is written to the outputs.

e A substructure HwIO in the local module status structure is used as buffer.
This also has the advantage that changing the hardware data points between
normally open to normally closed contacts only affects one location in the program.

IMPORTANT
Outputs are only allowed to be written to by a module one time!

3.7.3 Local Variables

e Names for local variables can contain all number and letter combinations.

e Exchanging local data and commands can take place using the
respective prefixes “C_" and “S_".

e Local variables are to be defined with “_LOCAL” in ANSI C.
This variable type can be viewed with “Watch”.

Additionally, they have to begin with the prefix ,,1* in ANSI C, the prefix is not
needed in all other IEC languages.

Example in IEC languages:

resAverage, intCounter,

Training ASPROG Page 6.9

“automation B&R Automation Studio™ 6. Project Guidelines |

3.7.4 Initializing Variables

Variables are principally only to be initialized in the “INIT SP” for the main task or
module.

The variable initialization in the variable declaration window is always to be set to
“remanent”.

3.8 Constant Names

e Constant names can have up to 32 significant characters.

e Self-defined constants are always written in capitals.

Constants defined by B&R standard software, e.g. NC software are exceptions.
They are not allowed to be changed during the creation of the application!

3.8.1 Constant Definition in ANSI C

In ANSI C, there are three possibilities to define constants.

e Constants that are valid throughout the system
These are always written in capitals and are not allowed to have underlines.

Example: TRUE, FALSE, UNDEF,
e Constants with software specific validity

Constants are principally always valid throughout the system, but the use of a
specific code allows them to be assigned to a program.

e Commands
Constants belonging to a spezial module are labeled with the module code
and an underline,

Example: MI_START, MI_STOP, C_START, C_STOP

Training ASPROG Page 6.10

“automation B&R Automation Studio™ 6. Project Guidelines |

3.8.2 Reserved Constants

These constants are writtenin capitals but are labeled mit “nc” in lower case at the
beginning.

Example: ncON, ncOFF, ncINIT

These constants are not allowed to be changed by the user.

3.9 Alias Process Variables for Function Blocks

In alias names of function blocks, the function block name always has to be first.
The description is separated by an underline.

Example: TON_valve, TOF_motor

3.10 Assigning Revision Numbers

In all headers where version numbers are assigned, the following procedure should
be used:

The version number consists of 4 characters.
XX.YY:

vy .. increased by 1 with each change
xx .. increased by 1 for major changes. yy becomes 0.

Version numbers are assigned in hex format.

IMPORTANT
Detailed literature concerning this topic is available.

Training ASPROG Page 6.11

putomation B&R Automation Studio™ 7. Sequential Function Chart

SEQUENTIAL FUNCTION CHART

T OVERVIEW ..ottt 2
2 SFC SYNTAX oottt ettt 3
2.1 SEEPS teoneeeeeitte ettt e 4
2.2 ACHONS niiiiiiiiiieeieeeeet ettt 5
2.3 TTanSIONS ecuveeeueieiieeiieeiieeieeeiee ettt 6
2.4 JUIMIPS oottt ettt e et e e e e 6
2.5 BranChescc.eooueeoiiiiiiiniieieeicee et 7
2.0 TEC STEPS cuvvieeiiieeiieeeiieeeite ettt et e 9
3 PLANNING WITH SFC ...coiiiiiiiiiieieeeeeeeeee e 11
3.1 Planning on Paper.........coocveiviiiiniiiiiniieeniieceiee e 12
3.2 SFC TOOIS ..ottt 13
3.3 SFC ApPPLICAtiONcovvuvieiiiieiiiieeiieeeiieecte et 14

Training ASPROG Page 7.1

Schulung / Training

putomation B&R Automation Studio™ 7. Sequential Function Chart

1 OVERVIEW

B&R offers the right programming language for every application and for every
programmers preference. This includes:

e [adder Diagram (LAD)

e Instruction List (IL)

e Structured Text (ST)

e Sequential Function Chart (SFC)
e B&R Automation Basic (AB)

e ANSIC

LAD Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

IL Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

ST This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

SFC A sequential language that was developed to separate a task into clear units.

Sequential Function Chart (SFC) is well suited for processes where states
change in steps, for example: automatic carwash

AB This B&R high level language is a clear and powerful programming language for
automation systems of the newest generation. Simple standard constructs guarantee
fast and efficient programming. Previously PL2000

ANSI C This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast and
efficient application programming.

Training ASPROG Page 7.2

putomation B&R Automation Studio™ 7. Sequential Function Chart

2 SFC SYNTAX

In this chapter, we will have a detailed look at the language Sequential Function
Chart (SFC).

SFC ist a graphically structured language which eases sequential control.

This IEC61131-3 language is based on GRAFCET, an important French
programming language.

The SFC programming symbols are divided into the following groups:

e Initialization step

e Steps — sequential states

e Actions — for IEC steps

e Defining characters for actions
e Branches

e Transitions
Transfer conditions between steps

Training ASPROG Page 7.3

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.1 Steps

2.1.1 Init Step

Every SFC program contains a special step. The initialization step.
This INIT step is symbolized by a double rectangle. The sequence begins with this
step each time the controller is started.

2.1.2 Normal Steps

»Normal* steps are symbolized by a rectangle. The rectangle contains the name of
the respective step.

A variable exist for each step with the name of the step. The status of the step can
be read from this variable.

For simplified steps, this variable has data type “BOOL”.
For IEC steps, this is a structure variable.

Training ASPROG Page 7.4

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.2 Actions

e Actions contain the actual program code

e Actions are always assigned to a step

They are several types of actions:
The languages IL, ST, LAD, AB and SFC can be selected.

2.2.1 Simple actions

The simple form of actions are called “Action”. The code contained in them is
always executed when the action is active. You can see that an action is assigned to
a step because a small triangle on the top right of the symbol appears.

|
Simple_Step \ b >

2.2.2 Entry Action

The code for the entry action is executed once when the step becomes active. That
means whenever the step status changes from inactive to active. If a step contains an
entry action, a small square with the letter “E” is shown in the bottom left corner of
the step symbol.

|
Simple_Step

ED

2.2.3 Exit Action

The code is executed once when the action status changes from active to inactive.
The exit action has an “X” in the lower right corner.

]
Simple_Step

SIS

Steps can contain both “entry actions”, and “exit actions” !

Training ASPROG Page 7.5

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.3 Transitions

Transitions are symbolized by “+ ” symbols at the connection point between the

steps. The transition conditions are on the right next to the symbol.

+Tran51

The transition conditions can be a simple BOOL variable or logically linked varia-
bles where the result must be TRUE or FALSE!

~|~va rl = ward

The space next to the transition is limited, therefore transitions canbe entered in a
separate editor. Only one link can be entered in this editor. Command sequences are
not allowed. If the transition is the result of a logical link, this is shown by a small
triangle.

s_e:{tended

Languages IL, ST, LAD and Automation Basic can be selected.

2.4 Jumps

Jumps are used to create loops and repeats. Jumps are represented by a jump
symbol. The name of the jump target is shown under the jump symbol.

e

Step

Training ASPROG Page 7.6

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.5 Branches

2.5.1 Alternative Branch

Using alternative branches, it is possible to continue processing in one of several
branches depending on the transition condition. If several transition are TRUE, then
the left branch is processed. To make things clearer, transitions should be selected
so that only one is active at all times.

—Activate Step —ActivateStep2

Step Step

— DeactivateStep —DeactivateStep2

2.5.2 Parallel Branch

Using parallel branches, it is possible to process several branches in “parallel”. The
steps in the respective branches are naturally processed one after the other. The
order moves from left to right. The transition which where the branches come
together is evaluated when the last step is active in each branch.

—ActivateBoth
Step Step2
—ActivateStep3 —TActivateStepd
Step3 Stepd
|
—DeactivateBoth

Training ASPROG Page 7.7

putomation B&R Automation Studio™ 7. Sequential Function Chart

Example
Use the editor to create a sequence with normal steps, transitions, alternative
branches and parallel branches to get used to the editor.

Add steps and transitions.

Delete steps and transitions, etc.

IMPORTANT
To select steps and transitions, you must work with the <SHIFT>+<Cursor> keys.

Project Name: sfc_prol
Task Name: sfc_edit

Resource: C#2

Note
Variables are requested directly by the editor and should be defined as local.

Training ASPROG Page 7.8

Schulung / Training

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.6 IEC Steps

2.6.1 IEC Actions
IEC actions can only be connected to IEC steps. They are recognizable by the hori-

zontal line on the right corner.

|
Stepi —

The actions are represented by “banners” which are connected to the horizontal line.

The “banner” is divided into 2 columns. The first column contains a letter that
specifies the execution rate. Some types of execution require a time entry which is
entered next to the letter. Constants, variables and literals of type “TIME” are valid
as time entries. The second column shows the name of the action being executed.

Stepl —(T B#10s Action

Several IEC actions can be connected to IEC steps. For example, an IEC action can
be continually activated in a step using execution type “S” and then deactivated in
another step with “R”.

|
Step1 T B10s Action

E_l |3’{_ Ml Action?

“Entry actions” and “exit actions” are also possible in IEC steps.

Training ASPROG Page 7.9

putomation B&R Automation Studio™ 7. Sequential Function Chart

2.6.2 Execution Types for IEC Actions

The folowing execution types are possible for IEC actions:

Qualifier Description

N Not stored

Action is executed as long as the step is active

R Reset

Action is not executed.
Stored status of the action is deleted.

S Set

Action executed until reset with R.

L t#Time Limited

Action executed as long as step is active and the set time has not passed (according to IEC
format).

D t#Time Delayed

Action executed if the set time has passed (according to IEC format) and the step is still active.

P Pulse

Action executed once when the steps becomes active.

SD t#Time | Stored and Delayed

Action becomes active after set time, independent of if the step is still active.

DS t#Time |Delayed and Stored

Action becomes active if the step was active for at least the set time, status is stored after the step
has ended.

SL t#Time | Stored and Limited

The action remains active for exactly the set time, independent of if the step remains active.

Tab. 7.1: IEC actions

2.6.3 Executing IEC Actions

Each IEC action has a structure variable with the name of the action.
Element .x of the structure can be used to read the activation status of the action.

Evaluating this value <action name>.x can be done to determine, if an action is
active or inactive.

IEC actions are executed as long as they are active. After changing from active to
inactive, the actions executed one more time.

During the last execution of the action, the value of <action name>.x = FALSE.

Training ASPROG Page 7.10

Automation B&R Automation Studio™

3 PLANNING WITH SFC

Example

Application:

Press start...
Open water valve

Water OK reached...
Close water valve,
Switch on stirring mech.,
Open color valve

Sensor Full reached...
Close color/dispersion
valve, Wait 30 sec.
Open drain valve
Switch on drain pump

Sensor Low reached...
Switch off pump, switch
off stirring mech.

Close drain valve

Procedure:

7. Sequential Function Chart

gDoValveWater

=

gDoMixer

(w)

GDoValveColor

>

gDiStart |- \

O——7 gDiSens_full

o——7 gDiWater_ok

7 gDiSensLow

gDoPumpDrain

()

=~

gDoValveDrain

Fig.

7.1: Chemical system section

e Determine the necessary steps

e Determine the transition conditions, transitions

e Define further programming conventions if necessary, for variable names,

etc.
e C(Create SFC task

e Program steps

e Program transitions

e Test steps

e Define outputs

e Enter code in the steps and test the function

Training ASPROG

Page 7.11

Schulung / Training

Automation

3.1 Planning on Paper

gDiStart

Automation B&R Automation Studio™

3.2 SFC Tools

7. Sequential Function Chart

Lo I] =
thoww TTT B Eﬁﬁl"t"#‘“ “ﬁ|acﬂhw j'\.“??ﬂ%ﬁﬁ
i Search ﬁ‘ Search forwards ﬁ' Search backwards.
<ctrl><f> <F3> <shift><F3>
71 Prev. step T Next step E}' Alternative branch Alternative branch
transition transition right left
<ctrl><t> <ctrl><e> <ctrl><a>
5 L L N
Parallel branch Parallel branch Jump Transition with
right left jump
<ctrl><I> <ctrl><u>
= Use e Add E Delete
IEC steps action action
I achbw j I :% Edit = Link Break/delete
Select actions action action action/step/
transition
l:i Start object l:i Stop object
Tab. 7.2: SFC Toolbar
Training ASPROG Page 7.13

Schulung / Training

Automation B&R Automation Studio™

7. Sequential Function Chart

3.3 SFC Application

Mixer in SFC.

The steps should always be defined first.

i" BER Automation Studio - [sfc_mix. src [Sequential function chart]]

E| File Edit “iew Insert Open Project SFC Object Tool: indow 2 =& ﬁ
NEEG o 4 & ?
th & B = | = o 13058 - =
Y
st_INIT
T Transl
St WATT
—Transl
st WATER
T Trans
st_COLOR
[
For Help. press F1 Lri 1. Col 1 COMZ2 |OFFLINE M

Fig. 7.2: Defining the steps in SFC

Then the transition conditions are defined.

i“ B%R Automation Studio - [sfc_mix_sic [Sequential function chart]]

E File Edit “iew Inzert Open Project SFC Object Toolz Window 7 ;lilﬂ
sy =T o e ?
#a b= |~ W forsee o] @
| [
st_COLOR

T ghifens_full

st WAIT30sec [|D t#30s |t30sec

T tildec. x

st DRATHN

T glifens low

=

st WATT E‘

For Help, press F1 Line 1 of 1 COME OFFLIME M

Fig. 7.3: Steps with transitions

Training ASPROG Page 7.14

putomation B&R Automation Studio™ 7. Sequential Function Chart

Mixer in SFC (continued)

When the inputs have been defined, the SFC program can be tested in ist basic

form.
l‘ﬁ" BXR Automation Studio - [RI0_pump.GDM [Project]] [_ (O] x|
_r Fil= Edit “iew [Inzet Open Project Object Tool: ‘window 7 - | 5'5‘
DeEdye=als - [xXEFscHa w2 22|
WMadel no. [kt || 110 | Dessription |
E"‘?“ RIO_PUMP Mame I Data Typel P Mame I Femark
EH i3 BPO | | ™ digital input 01 BOOL aDis ens_full Tms switching delay
Sk 3PSTI4S P digital input 02 BOOL aliivw'ater_ok Tmaz switching delay
E F digital input 03 EOOL gDiSens_low Tms switching delay
—hitl 3CP2E0.6041 1&2 digital input 04 EOOL aDiStart Tz switching delay
tﬁ;m%ﬂs 11
digital input 05 BOOL Tmsz switching delay
= digital input 08 EOOL Imz switching delay
i digital input 07 BOOL Tmaz switching delay
[digital input 08 BOOL Tmsz switching delay
-7, 383806 5
A, 3803806 E digital input 09 BOOL Tms switching delay
T 3EX1B0.E60-1 7 digital input 10 EBOOL Tms switching delay
_5 a digital input 11 EOOL Imz switching delay
EF¥E 2005 Remate 140 BFO digital input 12 BOOL Tmaz switching delay
5k 3PS4E53 P digital input 13 EOOL Imz switching delay
[l S P digital input 14 BO0L Tms switching delay
o 3DI47EE 1 digital input 15 BOOL Tmz switching delay
-7k 3004806 2 digital input 16 EOOL Tms switching delay
-7, 3413606 3
L g 4
4| | »
For Help. press F1 [ITCRIF |OFFLINE ML 5

Fig. 7.4: Defining the hardware assignments

& B&R Automation 5tudio | [O] =]
Datei Bearbeiten Anzicht Einfigen Offnen Projekt Debug Objgkt Estraz Fenster 7
Dedaieel- - xEmc0R @292 ||| el o=
f¥| ¢f_misch.src [Ablaufsprache] M=k I sf_misch_src [wWatch] sf_misch M= E3
MR TITL R e EE L L el e (B B | L bl L [2 e oe e e
ﬂ Mame I Tep | Folcel wiert |
% gDiSensLow BOOL i
& gDiSensvol BOOL i
% gDiStant BOOL i
) % oDiwasserlk EOOL i
[gbistart LIl % stasLaur BOOL o
& o DISPERS EOL 0
& o NT BOOL 0
o%_wAsIER T
© st WARTE 0 BO0L 0
& ot WASSER BOOL i
—+gDiWasserCk @ z305echbgel BOOL 0
st_DISFERS
—+gDifensVoll J
Driicken Sie F1. um Hilfe aufzurufen |Zeie 3 van 12 |COM1 [CR2B0 w210 [RUN | [z

Fig. 7.5: Testing the steps and the transition conditions

Training ASPROG Page 7.15

Automation B&R Automation Studio™

Mixer in SFC (continued)

7. Sequential Function Chart

Double-clicking on the step symbol opens a dialog box that can be used to define

the source type for the block.

ﬁ" B%R Automation Studio - [sfc_mix.src [Sequential function chart]]
File Edit “iew |nzett Open Projpct SFC Object Tools Window 2 _|5|5|
[Demdl el - xEE4SE s |ao w2 |
#h&E R FITLD B L L 4 o= ®[o0ze | % | e
st INIT j
Mew Acti X
T ew Aclion E3
Marne of the Action: Action st WAIT
st WATT Language of the Action——
UL
b Cancel |
—+gDistart " 5FC
& 5T
st WATER LR
—gDilfater_ ok
st COLOR d
For Help, press F1 |COM2Z |OFFLINE e

Fig. 7.6: Defining the code type

The outputs are defined in the block according to the plan made previously.

lﬁ" B%R Automation Studio - [Action st_WAIT [Structured text]] O] x|
File Edit “iew [nzert Open Project Obect Toole Window 7 _|5|5|
DS EHG s 2l - = XE (T LSE D @D D2

op @ T @A R oo

0001 |(* Wait Step *) =
oooz -
0003 | (* Create Message for Watch L1 *)

0004 (strMessage := "Wait Step active 17;

ooos

oo0o0s Declare ¥arniable HE
DogE [ame Type Scope | Attribute IVaIue I Owner | Remark. |
ooos stiMessage EETNEENR alobal mEmory * remanent

ooos

ooino

ooi1

oolz

ooi3

oo14

oois

oolé K. I Cancel |

oo1lv

oois

nnt1a hd

K1 =
For Help. press F1 |Ln 4, Col 36 |COM2 |DFFLINE M
Fig. 7.7: Code for step st_WAIT
Training ASPROG Page 7.16

automation B&R Automation Studio™ 7. Sequential Function Chart

Mixer in SFC (continued)

Comments can be added to the individual steps. The local menu can be opened with
the right mouse button.

l“ﬁ‘ B4R Automation Studio - [sfc_mix.src [5Sequential function chart]]
File Edit “iew |nsert Open Project SFC Object Tool: “indow 2 _|ﬁ'|5|

== IER- AN P e =N A
L I - L e T - T s
I :|
1

Step-Trangition [before] Chil+T
Step-Tranzition [after] Clil+E
—-gDigts Slternatie Branchmaht] Ehss
Alternative Eranch 125

Parallel Branich [right] Chel+L J
=t _WATER Parallel Brarch [left]

JumpE [kl
Tratisition:] ump

st WAIT

—gDiWat Add Epby-Action
Add Ezit-4ction

=t COLOR Faste Faral el naft]
- Fagte atter

Open Action/Tranzition Enter
Clear Action:Tranzition

—ghifer
d A ftrib

Timne Dwerview ..
st WAIT30sec SFC-Overview] B

Opens a didlog with the step att 5. Cal1 |COM2 |OFFLINE M

Optiors ..

Fig. 7.8: Enter comments for step

l?q" B%R Automation Studio - [sfec_mix_src [Sequential function chart]]

File Edit “iew [nzert Open Project SFC Object Took “Window 7 _|5|5|
IDE @ R =[x &[T LSE A @D DT
#hoa R TR LB L L = e R osnsee -7 - | %
| = -
St WATT If you et Step Attnbutes E —I
this ti
LS wam FdinirLarn time: ||
] GEN] tinne: Cancel
L gpistart irnir time: I |
LCaomrent:
If wou enter in "Minimurm time' or "M aximum time", d J
t WATER
e thiz times will be obzerved. Datatwpe of the attibutes iz TIME.
If you will exceed the min. time or max. time, the Y "SFCEmor
sill be zet to TRUE.
—gDhillater ok
Further Info PYs: [Press F1 Key for Help)
SFCEnableLimit
SFCQuitE ror
st_COLOR SFCEmoStep
SFCEmorPOL
—gDidens_full j
st WAIT3Osec Ho t#30s [t3nsec | =
For Help. press F1 ILn 1. Col1 |COM2 |OFFLINE M

Fig. 7.9: “Step Attribute” dialog box

Training ASPROG Page 7.17

putomation B&R Automation Studio™ 7. Sequential Function Chart

Mixer in SFC (continued)

Code for step “st_ WATER”

i‘ B&R Automation Studio - [Action st_WATER [Structured text]]

@ File Edit Yiew Inset Open Project Object Tool: ‘Window 2 =& ﬂ
(I =o = = 2 X oA & ?

op & T 4 & %

000l |(* Let in Water *) -
oooz
0003 | (* Create Message for Watch L1 *)
0004 |strMessage := "Let in Water
ooos
R DovValw
ooov
ooos
ogoos
oolo
o011
ooiz
o013
on14
oois
oola
o1

oois
noda hd

< | [

Far Help, press F1 Ln &, Coll COMZ |OFFLIME M

._
.

Fig. 7.10: Defining the outputs in the step

If an output is set in a step, it can be reset when exiting the step if required by the
application.

ﬂ“ B&R Automation Studio - [sfc_mix. src [Sequential function chart]]

E File Edit “iew [nzert Open Project SFC Object Tools Window 7 & x|
D E@ s o & ?
iR TTT B E w=| o= O 30500 ~| @ s
' [
st WATT If you enter in "Min

this times will be o

—+qgDistart
st _WATER 1 =
Step-Trangition [before] — Chl+T
Step-Tranzition [after) Ctrl+E
—4D
Parallel Branch [right] Chrl+L
=t COLOR Parallel Branch [left]

gD AddEnty-fction
Add Egit-Sction

st WAIT30sec ec |

LnE, Caol1 COM2 |OFFLINE i

Fig. 7.11: Defining an “exit action”

Training ASPROG Page 7.18

putomation B&R Automation Studio™ 7. Sequential Function Chart

Mixer in SFC (continued)

Source code for the exit action.

fﬁ‘ B%R Automation Studio - [Action st_WATER - Exit [Instruction list]]

m File Edit Miew |nzet Open Project Object Tools ‘window 7 =] x|
[D2EB@|éBR|- -« XEB T LSE|D @D 2|2

op & (M & R F o

0001 | {* EXIT Action for Step Let in Water *) -
oooz
0003 | (* The EXIT Action will be executed only once *)
0004 |(* at leaving the step ! &)
0005 | (* The EXIT &cticn 13 also used to reset the *)
0006 | (* Timer FUEs like TON to zero again | *]
aooy
0008 |gDhoValwveWater:= 0;
aoos
aoino
o011
oolz
o013
oo14
0015
00lé
aoi17
aois

) e

For Help, press F1 |Ln &, Cal 13 |COM2 |OFFLIME M

Fig. 7.12: Code for the exit action

fﬁ' B%F Automation Studio - [sfc_mix.sic [Sequential function chart]]
File Edit “iew |nzert Open Projpct SFC Object Toolk “Window 2 _|E’|1|

[DeEalzee cxEEdSE s |[mo o2
AERTITE R BEEL G 4= om0
I

-
st WAIT Tf you enter in "Minimum time" or "Maximum time", J
this times will he ohserwved. Datatype of the attributes i

FgDiftart

st WATER
b4

—Tglillater ok

_

st COLOR

T gligens full

fim of

For Help, press F1 ILn 8, Cal 19 |COM2 |OFFLIME N

Fig. 7.13: Indication of the exit action

Training ASPROG Page 7.19

automation B&R Automation Studio™ 7. Sequential Function Chart

Mixer in SFC (continued)

If we check the settings for the example again, we will see that the sensor inputs are
wired as normally closed contacts. That means they must be inverted. For the
transitions, it is possible to create this type of simple connection directly. The result
of this type of connection must be TRUE or FALSE. Other connections are not
allowed.

& B4R Automation Studio - [sfc_mix. sic [Sequential function chart]]

File Edit “iew Inzert Open Project SFC Object Tool: ‘window 2 =&

D@ liBee - (X &0 LS4 @y 2|2

BRR[TTE B EE L L] e N 0see | | v
I

N
=t WAIT If you enter in "Minimum time” or "Maximum time", J
thizs times will he ohserved. Datatype of the attributes i

—+gDiStart
New Transition

[|

=t WATER Mame of the Transition: Tranzition gDiwater_ak.

Language of the Transition
L
& B Cancel |

el
st COLOR B&R AB

5]

—ghilfater ok

—gDidens_full

b of

For Help, press F1 |Ln 8, Col 19 |COM2 |DFFLINE N 4

Fig. 7.14: Defining a transition connection

l‘fﬁ‘ B&R Automation Studio
File Edit “iew lnsert DOpen Project Ladder Object Tool: ‘Window 2

D= @ B s X |5 oS B S 650 0] 2
[t! sfc_mix.src [Sequential function chart] - O] x|
AR TR R T L e

=t WATT If you enter in d
this times will

Transition trwaterDk [Ladder ... =]
{4 R R 4 {5 R) O

-

st WATER pogj I—

oDlWiater ok T
—tridatyrok / |_+_{

st_COLOR

—+gDhidtart

—ghidens full =

K| Hl

For Help, press F1 [Het1,Ln1, Col 1 |COM2 |OFFLINE [M

Fig. 7.15: Code and indicator for a transition link

Training ASPROG Page 7.20

Automation B&R Automation Studio™ 8. Automation Basic

AUTOMATION BASIC

T OVERVIEW ..ottt 2
2 SYNTAX ottt ettt 3
2.1 Command GIrOUPSccecveeerveeeriieeriieeniee e eire e sree e 3
2.2 Operator PriOTItiesc.eevruieeriiieeniieeeiieesiee et 4
2.3 Logical LinKScovuiiiiiiieiiiieeieeeeceeeeee e 5
2.4 Arithmetic OPErationsccoveeerveeerireenrireeeireenieeenvee e 6
2.5 Data Type CONVETSIONeevvvveeriiiieniieeniieenieeesieeesiee e 6
2.6 Logical Comparison EXpressionscceceeeveveeenieeenieennnne 7
2.7 DECISIONS ...ttt ettt ettt 7
2.8 Case StACIMENLS ..c...eeuveerieirieiiieniieeieente et et s e 8
2.9 LLOODS ittt e 11
2.10 Select StatemMENLScocveerveerieerierieenieeieene e 13
2.11 Working with Function Blockscccoceiviiiiniiinnnnnne. 16

Training ASPROG Page 8.1

Schulung / Training

Automation B&R Automation Studio™ 8. Automation Basic

1 OVERVIEW

LAD

ST

SFC

AB

ANSIC

B&R offers the right programming language for every application and for every
programmers preference. This includes:

e [adder Diagram (LAD)

e Instruction List (IL)

e Structured Text (ST)

e Sequential Function Chart (SFC)
e B&R Automation Basic (AB)

e ANSIC

Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

A sequential language that was developed to separate a task into clear units. SFC is
well suited for processes where states change in steps, for example: automatic
carwash

This B&R high level language is a clear and powerful programming language
for automation systems of the newest generation. Simple standard constructs
guarantee fast and efficient programming. Previously PL2000

This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast and
efficient application programming.

Training ASPROG Page 8.2

Integrale

2 SYNTAX

2.1 Command Groups

e Logical Links

e Arithmetic Operations

e Logical Comparison Expressions

e Decisions

e Loops

e Select Statements

e Function Blocks

Automation

B&R Automation Studio™

2.2 Operator Priorities

8. Automation Basic

The use of several operators in a line brings up the question of priority.

Operation Symbol Priority
Brackets O highest
Function Evaluation Qualifier
Argument List
Exponential EXP(IN1,IN2)
Negation NOT
Complement
Multiplication *
Division /
Modulo MOD
Addition +
Subtraction -
Comparison <, >, <=, >=
Equal =
Unequal <>
Boolean AND AND
Boolean Exclusive OR XOR
Boolean OR OR lowest
Tab. 8.1: Operator priorities

Training ASPROG

Page 8.4

B&R

Automation

2.3 Logical Links

Automation Studio™

8. Automation Basic

Symbol |Logical Links Example
NOT Unary Negation a := NOT b;
AND Logical UND a := b AND c;
OR Logical OR a := b OR c;
XOR Exclusive OR a := b XOR c;
Tab. 8.2: Logical links

Motor_ 1

In 1

]

in_4 \

Motor 1 [|

:= (In_1 AND

(NOT In_2 OR

In 3))

Training ASPROG

OR In_4;

Page 8.5

Automation B&R Automation Studio™ 8. Automation Basic

2.4 Arithmetic Operations

A decisive factor when deciding to use a high level language is the simplicity when
handling arithmetic operations.

Automation Basic provides the basic arithmetic functions for your application such

as:

Symbol | Arithmetic Operations Example

= Assignment a := b;

+ Addition a := b + c;

- Subtraction a := b - c;

* Multiplication a := b * c;

/ Division a :=b / c;
mod | Whole number division a := b mod c;

remainder

Tab. 8.3: Arithmetic operators

2.5 Data Type Conversion

2.5.1 Implicit Data Type Conversion

If different data types come together in operations, the compiler carries out an
implicit data type conversion.

Data type | BOOL | SINT INT DINT | USINT | UINT | UDINT | REAL
BOOL X X X X X X X
SINT X INT DINT | USINT | UINT | UDINT | REAL
INT X INT DINT INT UINT | UDINT | REAL
DINT X DINT DINT DINT DINT | UDINT | REAL
USINT X USINT INT DINT UINT | UDINT | REAL
UINT X UINT UINT DINT UINT UDINT | REAL
UDINT X UDINT | UDINT | UDINT | UDINT | UDINT REAL
REAL X REAL REAL REAL REAL | REAL REAL

Tab. 8.4: Implicit data type conversion

2.5.2 Explicit Data Type Conversion

Explicit data type conversion takes place using functions from the STANDARD
library.

e.g.:. DINT(bool_var)

Training ASPROG Page 8.6

B&R Automation Studio™ 8. Automation Basic

Automation

2.6 Logical Comparison Expressions

High level languages such as Automation Basic allow branches to be easily create
using comparison operations.

Symbol | Logical Link Expression Example
= Equal IF a = b THEN
<> Unequal IF a <> b THEN
> Greater than IF a > b THEN
>= Greater than or equal IF a >= b THEN
< Less than IF a < b THEN
<= Less than or equal IF a <= b THEN
Tab. 8.5: Logical comparison expressions
2.7 Decisions
Decision Example Description
a := b * c; Calculations
IF Introduction
THEN IF a > 0 THEN 1** Condition
result := 1; Condition met
ELSE IF ELSE IF a = 0 THEN 2" Condition
value := 100;
ELSE ELSE Otherwise ...
result := 0; No condition met
ENDIF ENDIF End of decision

Tab. 8.6: IF statements / decisions

e First condition true:
Execute the THEN branch

e Second condition true:
Execute the ELSE IF THEN branch

e Conditions are false:
Execute the ELSE branch

The ELSE IF BRANCH and the ELSE branch of an IF statement are optional.

Training ASPROG Page 8.7

Automation

2.8 Case Statements

B&R Automation Studio™

8. Automation Basic

CASE statements all fast access of various actions depending on the value of a
variable. We will clarify the use of CASE statements using a display switch with a
selection dial that has several positions:

Case Statement | Example Description
CASE CASE Position OF Introduction
OF
ACTION 1: ACTION 1: Only for one position
Display OVERVIEW;
ENDACTION
ACTION 2,5: ACTION 2: Valid for position 2 or 5
ACTION 5:
Display NOT_SUPPORTED;
ENDACTION
ACTION 6..10: ACTION 6..10: Valid for positions 6 to 10

ACTION 11..20:

ELSEACTION

ENDCASE

Display
ENDACTION

ACTION 11..20:

Display
ENDACTION

ELSEACTION:
Display
ENDACTION
ENDCASE

SET_VALUE;

ACT_VALUE;

ERROR;

Valid for positions 11 to 20

All other positions

End of the CASE statement

Tab. 8.7: Case statements

The expression, between CASE and OF must be a UINT data type
and can have a value between 0 and 65535 !

Only whole number values can be used as steps.

A colon must be placed after the step number.

Several numbers can follow the same statement block:

e Fields with progressive numbers e.g.: 6..10:
can only have 2 points between the numbers !

e Lines in a list of number lines must be directly below the previous line

e.g.

ACTION 2:

ACTION b5:

The ELSEACTION STATEMENT BLOCK PROCESSES ALL NUMBERS THAT
ARE NOT LISTED. ONLY ONE STEP PER CYCLE is executed.

Training ASPROG

Page 8.8

Automation

Example

B&R Automation Studio™

8. Automation Basic

The CASE statement is often used when making selections. In this example, we
want to use the CASE statement for simple elevator control.

The elevator control should be created for a building with 3 floors.

The following steps must be used:

° Definition of the constants for the ACTIONS

BASEMENT
FIRST FLOOR
SECOND FLOOR

UINT
UINT
UINT

) Initialization of the floor positions

basement_pos
firstfloor_pos
secondfloor_pos

= 0
500
1000

E Direction
0
secondfloor_pos = 1000

Motor

1

)

firstfloor_pos = 500

® @
©
©

SECOND FLOOR

FIRST FLOOR
BASEMENT

_
.

basement_pos =0

_
.

Training ASPROG

Page 8.9

Schulung / Training

Automation B&R Automation Studio™ 8. Automation Basic

° Programming the cyclic program
The current set position is set to the selected floor in the individual steps.
e.g. set_pos = basement_pos
Monitoring and control of the positions is handled outside of the step. If the current

position is smaller than the set position, it must be increased until it is equal to the
set position. The direction of the movement and the motor must be considered.

if (act_pos > set_pos) then
motor = 1 ; Switch motor on
direction = 0 ; Downwards directions
act_pos = act_pos - 1

else if (act_pos < set_pos) then

; the program should be completed here

If the set position is the same as the actual position, then the motor should be
switched off.

Project Name: proj_ab
Task Name: elevator

Resource: ?

Training ASPROG Page 8.10

Schulung / Training

Integrale _ . .
Automation B&R Automation Studio™

2.9 Loops

8. Automation Basic

Loops working together with a condition, allow one or more statements to be
executed repeatedly. In Automation Basic, all types of loops are created with a

single construct.

Key Words Program Description
LOOP LOOP i := 0 TO 4 DO Introduction
TO/DOWNTO

DO res := value + 1i; Statement block
ENDLOOP ENDLOOP Loop End

Tab. 8.8: Loop variant 1

The statement block is only executed when conditions are not met.

Key Words Program Description

LOOP LOOP Introduction

EXITIF EXITIF res > 2000; Exit Condition
res := value + 1i; Statement block

ENDLOOP ENDLOOP Loop End

Tab. 8.9: Loop variant 2

The statement block is executed at least once.

Key Words Program Description

LOOP LOOP Introduction
res := value + 1i; Statement block

EXITIF EXITIF res > 2000; Exit Condition

ENDLOOP ENDLOOP Loop End

Tab. 8.10: Loop variant 3

IMPORTANT

Make sure that endless loops are not created because they will cause a cycle time

violation.

Training ASPROG

Page 8.11

Automation

Example

B&R Automation Studio™

8. Automation Basic

In a house, the temperature is measured at 10 different locations. To improve
monitoring of the heating costs, the average value should always be calculated.

The solution should be created using a loop !!!

If a temperature is outside the limits,

TEMP_MAX
TEMP_MIN

80°C
10°C

then an error bit should be set.

Project Name:
Task Name:

Resource:

proj_ab

temp_l

C#1

Training ASPROG

Page 8.12

Schulung / Training

Automation

2.10 Select Statements

Select statements allow sequential control to be easily programmed and later

monitored.

B&R Automation Studio™

8. Automation Basic

We will clarify sequential control programming using the following electrically

operated punch machine.

Select Statement

Example

Description

SELECT

STATE

WHEN
NEXT

ENDSELECT

SELECT sStep

state DELAY

state UPWARDS

state UPWARDS

ENDSELECT

Variable

WHEN StopKey

cmdMotor

cmdMotor :=

CmdDirection :=

=1

I 1l
o [l

NEXT DELAY

|
o

WHEN UpKey =1
NEXT UPWARDS
WHEN DownKey = 1

NEXT DOWNWARDS

WHEN EndTop = 1
NEXT DELAY
cmdMotor := 1

CmdDirection := 1

WHEN EndBottom = 1
NEXT DELAY

CmdMotor := 1

|
o

Introduction (optional with step

number variable)

Global statement

Global condition

State block qualifier

Continue condition

Next step

End of loop

Tab. 8.11:

Select statement

Training ASPROG

Page 8.13

Automation B&R Automation Studio™ 8. Automation Basic

2.10.1 Syntax Descriptions

A select statement can consist of any number of states !

e One state is executed per task cycle !

e The first state in the select construct has number 0.

e For each next statement, there must be a corresponding state !

e [f an exit condition is met, the folowing commands are no longer executed!

e Number code of the state (Data type: UINT, Scope: local)
The step number which is always visible and the best possible
monitoring which results from it. Writing to this PV can also influence the
process.

e Global statements and transfer conditions
They are executed in each cycle and can therefore be used for error
monitoring and to quickly react to special events and high priority queries.

e The structure of the Select construct must be used, i.e. a state cannot be
exited using an IF statement !

Example
WHEN LowEnd = 1

motor = 0

NEXT DELAY

e Nesting Select statements is possible!

e QOutputs should only be written to once !

Training ASPROG Page 8.14

Automation

Example

B&R Automation Studio™

8. Automation Basic

Create a program in AB for the following chemical system. The solution should be
created using a Select statement.

Description of the process:

Press start...
Open water valve

Water OK reached...
Close water valve,
Switch on stirring mech.,
Open color valve

Sensor Full reached...
Close color valve,
Wait 30 sec.

Open drain valve
Switch on drain pump

Sensor Low reached...

gDoValveWater

=

gDoMixer

(w)

GDoValveColor

]

O——7 gDiSens_full

o——7 gDiWater_ok

7 gDiSensLow

gDiStart |-~ gDoPumpDrain
Sw%tch off pl‘lm‘p ST (w)
Switch off stirring mech. -
Close drain valve ~]
gDoValveDrain
Example: Chemical system section
e Program the individual steps in AB
o Test the program
e How should E_STOP handling look ?
Project Name: proj_ab
Task Name: mix_Iq
Resource: ?
Training ASPROG Page 8.15

Schulung / Training

Automation B&R Automation Studio™ 8. Automation Basic

2.11 Working with Function Blocks

2.11.1 FBK Call

The function blocks are called like commands. They are accessed using their name.
In brackets, then input and output variables follow in order beginning with the first
input.

Example of a 2 second turn-on delay:

(* Function block call *)
Preset := T#2s;

TON (Input, Preset, Off, Elapse)
or:

TON (Input, T#2s, Off, Elapse)

IMPORTANT
All input and output parameters must be entered !

2.11.2 Alias FBK Call

The main difference between an alias call and the procedure used previously is that
values are assigned using a freely selectable structure name / alias name and
structure elements with the same name as the FBK parameters.

Example: Alias call for TON function block (Library: Standard)

time = T#2m_30s_500ms ; Value assignment
TON_xx.IN := Input ; Alias input parameter
TON_xx.PT := time ; Order is not critical

; Any program section
TON_xx FUB TON() ; Alias FBK call
; Any program section

Elapse := TON_xx.ET ; Alias output parameter
Output := TON_xx.0Q ; Alias output parameter

Training ASPROG Page 8.16

Automation B&R Automation Studio™ 8. Automation Basic

Example
Use a 16-bit up/down counter

The count procedure should be carried out by the CTUD function block
(Library: Standard).

The CTUD FBK requires the following parameters:

Input/Output Parameter | Type Description
= CuU BOOL |Up counter input
= CD BOOL |Down counter input
= RESET BOOL |Reset counter to 0
= LOAD BOOL |Load counter with preset value
= PV UINT Preset value and compare value
= QU BOOL TRUE, if CV >= PV
(<] QD BOOL TRUE, if CV <=0
= cv UINT |Current count

Tab. 8.12: Parameter list for CTUD FBK

The function block is to be called using a normal and an alias call.

Project Name: proj_ab
Program Name: ab_fbk
Resource: ?

Training ASPROG Page 8.17

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

DATA HANDLING

L. OVERVIEW ..ottt 2
2. PROCESS VARIABLESooiiiiiiieeeteeeeeeeee e 3
2.1 General Informationccoceeviiiiiinieniiiinicnccececeen 3
2.2 DALA it 4
2.3 Basic Data TYPESveeevuveeiiieeiieeiee et 5
2.4 User Data TYPES .cccuveeeriieiriieiiiieeriee ettt 7
2.5 Function Block Data Typescccocveeviiieeniiieiniieeniieeeieeens 17
2.6 Dynamic Process Variablesccccoovveeviieeniieeniieeniieens 20
3. DATA MODULES ..ottt 28
3.1 General Informationcc.ccoeceerviernienieenienicneceeeeeeen 28
3.2 What is adata module ?cocveriiiniiiiiinicnceeee, 29
3.3 What advantages does a data module offer ? 30
3.4 Creating a Data Module in AutomationStudio................... 31
3.5 Reading a Data Module from the Application 34

3.6 Creating and Writing to a Data Module from the Application38

3.7 Autonomous Data Module Memorycccccceevveernneennne. 40
4. MEMORY MANAGEMENTccoooiiiiiiiniiieneeeeieeeeseeiene 41
4.1 General Informationcccccceeeeviiriienienieineeeeeceee 41
4.2 MEMOTY ACCESS ..vveerurreeniiieeniiieeniieesteeeneeesnineesireesieeesneens 42
4.3 LOCALION ...ttt 43
4.4 Memory Organizationcceccueeerveenneeeniieeenineeesineesnineens 47

Training ASPROG Page 9.1

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

1. OVERVIEW

Process Variables
For optimal control and separation of information, the user is provided various
“Basic Containers” to store data. They can be combined as desired. Simple and
flexible access possibilities are available.

Data Modules
Information should often be clearly structured as tables, lists, recipes. Compact and
simple access possibilities are provided.
Data modules have overwrite protection.

Memory
Different conditions make it necessary for programmers to store data using suitable
memory media with respective physical properties.

Training ASPROG Page 9.2

Automation B&R Automation Studio™ 9. Data Handling

2. PROCESS VARIABLES

2.1 General Information
Basic Data Types

BOOL, USINT, UINT, UDINT, SINT, INT, DINT and REAL with an array length
of one in the variable declaration.

User Data Types
Organization of data in clear units, arrays, structures, arrays of structures.

Function Block Data Types
Grouping input/output data and internal FBK information using alias PVs.

Dynamic Process Variables
A powerful tool used for simple solutions to complex applications.

Training ASPROG Page 9.3

Automation B&R Automation Studio™ 9. Data Handling

2.2 Data

We will begin with the question: “What do we want to save ?”

e Program code

e Recipes

e Tables

e Machine options
e Process variables
e IO information

e Internal variables
e Parameters

e Status values

This is information with very different uses for the contents.

In order to describe this information using a common term, we will refer to it as
data to be processed.

This data is stored in memory.

Memory is the sum of all containers where information can be placed.

Fig. 9.1: Memory = containers

Training ASPROG Page 9.4

Automation B&R Automation Studio™ 9. Data Handling

2.3 Basic Data Types

2.3.1 What is a basic data type ?

Our data can be placed in memory. This consists of a certain number of consecutive
units.

Such a unit consists of 8 bits and is referred to as a byte or USINT according to
IEC61131.

Each of these USINTs = memory locations, has a unique number similar to the
address of a house. Using this address, the memory address, AutomationRuntime
or our application can access the content of this memory address (read or write).

In our programs, we do not use direct addresses. Instead we use a symbolic names
as synonyms for the addresses (PV names).

A memory location interpreted as USINT has a value range from 0...255,
or interpreted as SINT from -128..0..+127.

If the information we want to save in memory has a larger values, we have to sepa-
rate it over several memory locations and interpret it accordingly.

To do this, the compiler provides different container sizes, the basic data types
defined in the IEC61131 standard.

; ** Prg Code **

if PvInt >

\/\
;** Prg Code **

PvUsint:= 123 <¢//

f

Fig. 9.2: Basic data types

Training ASPROG Page 9.5

Snutomation B&R Automation Studio™

2.3.2 How do I use basic data types ?

Note

9. Data Handling

In the declaration, the AutomationStudio is informed of how much memory is

should reserve in AutomationRuntime for a static PV.

When using a PV which is not yet recognized in AS, the programmer is requested to

select a suitable data type in the declaration using
Project: Create or Project: Create all.

B B4R Automation Studio

Fil= Edit “iew Inset Open Project Object Tools Window 2

DSHE 4 B@|o - (XF T ASH |40 0|2

0003 [(* using a basic data type *)
0004 [pvusint:= 255;

[if data.src [B&R Automation Basic] 9 [=]
oo & O3k & R 5| o

0001 {* cyclic program *)

oooz

Fig. 9.3: Selecting a basic data type

Relationship between type and bit size:

SINT . 8 BIT “S” stands for short
INT . 16 BIT No special format
DINT .. 32 BIT “D” stands for double

Training ASPROG

—
ooar Mame I Tupe I Scope I Aittribute | Walue | Ciner
ooags prLizint BOOL global mEmory * remanent
So10
Cateqgony: Aigsign item ta:
IBasic data type 'I @& EBOOL oK, I
@ DATE_AND_TIME
= @ DINT Cancel |
Amay I1 = @ INT
= @ REAL HEl |
Lehglh.l1 :II @ SINT
@ STRING
Irfo @ TIME
@ LUDINT
Min 0 & UINT
AR
Na. of items 0
Bit length o
Bute length 1
Shiowy external ibnares I
Filter:
[usiNT

Page 9.6

Automation B&R Automation Studio™ 9. Data Handling

2.4 User Data Types

Arrays
An array is the grouping of PVs with the same data type that belong together. This
grouping has two major advantages:

e One variable name, access various contents using index
e The PVs are all alligned consecutively and can therefore be easily accessed
using a pointer

A string is a special form of array.
A string is a zero terminated USINT array.

Structures
A structure is the grouping of PVs with different data types that belong together.
This grouping has some major advantages:

e Help with the organization of complex data sets

e The PVs are all alligned consecutively and can therefore be easily accessed
using a pointer

Arrays of Structures
A combination of arrays and structures. If a structure is needed often e.g.:
positioning several axes, an arrays is placed over it and the structure is applied
several times consecutively.

Training ASPROG Page 9.7

Automation B&R Automation Studio™ 9. Data Handling

2.4.1 What is an array ?

If you need to manage several units of information with the same size (same data
type) that belong together, an array is the simplest solution.

If e.g.: several temperatures are to be saved as INT, an array with a PV name and a
corresponding number of elecments can be used as user data type instead of
individual variables.

The selection of the desired elements takes place using an index between square
brackets. This index provides programming advantages when handling this array
variable e.g.: access using loop commands !

\/\
;** Prg Code ** iy

PvUsint [0] :=8{<¢//

Fig. 9.4: ©User Data Type Array

$A000

Training ASPROG Page 9.8

Gnutomation B&R Automation St

2.4.2 How do I create an array ?

In the declaration, the programmer defines the data type of the PV and also the array
length which corresponds to the number of elements desired.

(* oyolic program *)

(* using a hasic data type *)

pvusint array[0]:= 255; ** access via index **

[bwibue [vake |

prousint_amray LISIMNT[E] local memaiy * remanent

Agsign Data Type

B
Cl

BOOL
DATE_AND_TIME
DINT

INT

REAL

SIMT

Fig. 9.5: Defining the array length

Automation B&R Automation Studio™

2.4.3 Tips for Arrays

Note

e The largest index possible is always the array length - 1 !

e Begin with array index 0.

9. Data Handling

The defined array range can be exceeded by entering an index that is too large.

In the following example, the reserved memory for the array PV “pvusint_array*

exceeded and a PV which may follow is overwritten !

pvusint_array[b] := 123;

Such errors (which are difficult to find) should be avoided by careful

programming!!

From Library Function Name | Short Description

AsString memcpy() Copying an array, length is to be entered explicitly
—————————— sizeof() Determine array length

Tab. 9.1: Corresponding functions

Training ASPROG

3

Page 9.10

Automation B&R Automation Studio™

2.4.4 Strings are also Arrays

9. Data Handling

e A string is a special type of array.

e A USINT is required for each character.

e Strings are to be declared in the variable declaration as USINT arrays.

e The end of a string is coded using a 0 in the last element (zero termination).

e Therefore an additional array element must be reserved for zero termination.

From Library Function Name Short Description
AsString strepy() Copy a string up to zero termination
AsString strcat() Combine two strings
AsString strlen() Determine string length
AsString itoa() Convert an integer value to a string
SYS_LIB DIS_str() Output a string on the 2010 status display
SYS_LIB DIS_chr() Output a character on the 2010 status display
SYS_LIB DIS_clr() Clear the status display on the 2010
STANDARD str3= concat(strl,str2) Combine 2 strings after str3
STANDARD str2=delete(str1,L,P) Delete L character from strl beginning at P
STANDARD P=find(stl,str2) Find position P of string str2 in string strl
STANDARD str3=insert(str1,str2,P) Insert str2 after strl at position P, save in str3
STANDARD str2=left(str1,L) L on left of strl character to str2
STANDARD str2=right(str1,R) R on right of strl character to str2
STANDARD str2=mid(str1,L,P) L character from position P from str1 to str2
STANDARD L=len(str1) Determine string length L of strl
STANDARD str3=replace(strl,str2,L.,P) |Replace L characters starting at position P from str1 to str2
Tab. 9.2: Corresponding functions

Training ASPROG

Page 9.11

Automation B&R Automation Studio™ 9. Data Handling

2.4.5 What is a structure ?

Units of information with the same size or even with different sizes often belong
together e.g.: the date elements Day, Month and Year belong together.

The structure user data type can be used to clearly show that these elements belong
together in the program code.

A structure consists of basic data type elements which belong to a higher level PV,
the PV with data type structure. These elements are separated from the higher level
PV by a “.”.

;** Prg Code ** 004

,HJ \Té_ésg
Pv.Uint:= 888 | $A003
;** Prg Code ** -
/. 88 noo1
Pv.Usint:=88 .
$A000

Fig. 9.6: User Data Type Structure

Training ASPROG Page 9.12

“Auiomation B&R Automation Studio™ 9. Data Handling

2.4.6 How do I create a structure ?

Structure data types are clearly handled in a separate editor.
Using menu item Open: Data Types, a new structure can be created using the
toolbar and its elements can be entered or changed.

& B&R Automation Studio
File Edit “iew |nsert

Project Object Tools ‘Window 7

Sl N EN I A

MName | Type I Owner

H®B SFCActionType runtime

™ SFCStepType runtime

N e
L4 fear LIINT
F% Month LISINT

Le Dy LISINT

Opens the declaration of data types |Ln 7. Cal 1 |COM2 [OFFLINE M 4

Fig. 9.7: Handling structures

In the declaration, the programmer selects the structure type:

ﬁf B&H Automation Studio

File Edit Wiew Inset Open Project Object Tools ‘Window 2

DSHE 2@ - [XF| g2l 4 oo

[data_src [B&R Automation Basic] - |c

o0 & O &R E| oo

oool (* cyclic program *)

oooz

0003 |{* using a basic data type *)

0004 [PvDate.year:= Z001; ** access to a structure element **

D00 Declare Yariable

000&

ooo7 Mame I Tupe | Scope IAttribute I Walue | Owrier

aoos PvDate Date Tup lacal memary * remanent

ooos =

0o0io Assign Data Type [2] =]
Categaorn: Agsign ikem b

o SFC.&ctionType

@8 SFCStepType Cancel |
Aray: I'I ;I
=
Length: IIJ ﬂ

HelE |
~Info

Mo, of iterms =]
Eit length u}
Bute length o
St exteria librares I
Filter:
IDale_Typ

Fig. 9.8: Selecting the structure data type

Training ASPROG Page 9.13

Automation B&R Automation Studio™ 9. Data Handling

2.4.7 Tips for Structures

Note

The compiler automatically (implicitly) follows the memory access rules when
reserving memory for PVs required by AutomationRuntime or AutomationTarget.

An example of such a rule is:
PVs with a data type larger than USINT always beging in a structure on an even
memory location !

Therefore this rule, which is called allignment behavior of the compiler in the
programming language, must be followed by the compiler during memory
management.

If necessary, the compiler will insert filler bytes in the structure. However, they
remain hidden from the user i.e. memory is reserved but cannot be directly accessed
using a PV name.

To make these filler bytes visible, the programmer should handle the allignment
behavior explicitly using reserve bytes.

Advantages:

e [f the structure needs to be expanded later, a reserve byte can be used without
changing the structure size !

e On different platforms, different alignment rules could be required. Explicit
alignment allows platform independent,
portable code !

From Library Function Name | Short Description
AsString memcpy() Copy a structure, length is to be entered explicitly
AsString sizeof() Determine structure length

Tab. 9.3: Corresponding functions

Training ASPROG Page 9.14

Automation B&R Automation Studio™ 9. Data Handling

Example
An axis should be positioned.

The following data is required for positioning:

e Name [USINT]
e Target position [INT]
e Speed [INT]
e Acceleration [INT]
e Active [USINT]

Organize the elements under a common topic as a structure and then use it as data
type for a PV that you assign values to in the INIT SP of the program.

Check the results in Watch !

Project Name: Data
Program Name: dt_ex
Resource: C#4

Training ASPROG Page 9.15

Schulung / Training

“Auiomation B&R Automation Studio™ 9. Data Handling

2.4.8 Combination of Array and Structure

In the declaration, the programmer selects a structure data type and defines the array
length for the desired number of elements.

By B&R Automation Studio =]
File Edit Wiew Inget Open Project Object Toolz window Y

DEH@ % 2R« X&F|O LSS %2 0|
[data.sic [B&R Automation Basic] O] =|
op % O (44 & R 5 0 0

o001l 1=
0012 |axis[0] .Name:= "X° ;** Aocess Lo an structurelement of an array
0013
D014 Declare Yariable 7 x|
UuLs Mame I Tupe Scope I Attribute I Walue I Olvarver I Femark, I
nole axis Az Type[d global MEMONY e
ool :
0015 Assign Data Type EHE
goig Categomny: Azgign ikem to;
nozo IUser data types 'I - k.
®8 Date_Tupe

®8 SFCActonT ype Cancel |

@@ SFCStepType
Helm | Ok Cancel

For Help, press F1

Fig. 9.9: Selecting the structure data type with array length

Training ASPROG Page 9.16

“Auiomation B&R Automation Studio™ 9. Data Handling

2.5 Function Block Data Types

Function blocks process input data and create output data using internal variables.
In order to have a clear overview of the data, it can be organized with a structure.

The data type is provided to the programmer by the LibraryManager in
AutomationStudio according to the respective FBK.

2.5.1 Declaration of an Alias PV

In the declaration, the programmer has to select the data type belonging to the FBK.
Using the data type, the compiler recognized which FBK code should be called for
text-based IEC languages and AB.

A PV with function block data type is called an Alias PV.

& [B&R Automation Studio - 0] x|
File Edit “iew Inzsert Open Project Object Tool: Window 72

DEE@ & B@|(~ | XE L% e ®

[data.sic [B&R Automation Basic] O] x|
op & 0|84 & R F | oo
ooi4 =
0015 |[TON motor.IN:= gDiStart ;** Access to a Functionbhlock slement
00lé e
D017 Declare ¥ariable 7| x|
nois Mame I Type Scope I Abtribute I Walue I Chwruer I Remark I
0o1s TOM_mator TOM local MEMANY e
oozo .
Aszzign Data Type
D021 g ¥D HE
00zz Cateqary: Azzign item to:
00z3 IFunclion block s "I e TP ;I oK I
e TOF
Lray: |1 j LBl SEMA
FEr RS Help | ok Cancel
=l e
Length: = SR
HEE R_TRIG
el F_TRIG
~Infa
Lib: standard B LTy
Faor Help, press F1 Wer:0.00 —EE CTD
Tuorma Frmmetinen Blaolk e CTHIR 1

Fig. 9.10: Selecting a function block for an Alias PV

Training ASPROG Page 9.17

Snutomation B&R Automation Studio™

9. Data Handling

The FBK call can be made from the main menu item Insert: Function.

ﬁ‘ B&R Automation Studio

[_[O]]
File Edit “iew |nset Open Project Object Tools ‘Window 7
DSH@ L 2Re - XE TS84 a0 2]
[§ data._src [B&R Automation Basic] |- (O]]

o0 ¢ O M a R[] o0

o014
0013 |TON_motor.IN:
0016 |TON motor.PT:
o017
(IEE=RITON motor FUB TO
001s
oozo
0021
O0:2
00z3

|

gDigtart ;** Access to a Functionblock element
t#10s ;

;** FUB Aufruf mit Alias PV

For Help, press F1 |tn 18, Cal 1 [COM2 [OFFLINE N
Fig. 9.11: Inserting a FBK call

Training ASPROG

Page 9.18

Automation B&R Automation Studio™ 9. Data Handling

Example
Controlling the external fan for a spindle motor.

When switching the spindle motor off by resetting the PV gDoMotor to 0, the fan
motor, which is controlled by the PV gDoFan, should continue running for 10
seconds.

Program a turn-off delay using the TOF FBK in AB and check the behavior.

Project Name: Data
Program Name: dt_ex
Resource: C#4

Training ASPROG Page 9.19

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

2.6 Dynamic Process Variables

2.6.1 What is a dynamic process variable ?

The PVs used up til now have a fixed location in memory. The content of these
memory locations can be referenced by name and processed.

If you want to access a different memory location, you have to use the name of the
PV that is assigned to this memory location.

When compiling, this PV is assigned a fixed address which cannot be influenced by
the user during runtime.

These types of PVs are called static variables !

However, a PV name should often be used that can access different memory
locations. To do this, the PV is declared as pointer and a fixed address is not
assigned when compiling !

The memory location that the point should access can be defined by the user during
runtime, this is referred to as “defining a reference for the pointer”.

These types of PVs are called dynamic variables !

The content of the memory locations is interpreted according to the selected data
type beginning at the start address. The data type of the dynamic PV functions as a
mask.

;** Prg Code **

PvUsint[0] :=8

v

Fig. 9.12: Dynamic process variables

Training ASPROG Page 9.20

“Auiomation B&R Automation Studio™ 9. Data Handling

2.6.2 Determining the Address

AutomationStudio assigns each static PV an address offset which is linked to free
memory addresses on the AutomationTarget by AutomationRuntime.

The memory address for a PV can be determined in the application program in
language AB using the operator “adr()”.

It returns the address as a UDINT value.

;** Example **
Adr_PvInt:= adr (PvUint)

@ B&R Automation Studio _ (O] |
File Edt |nsett Wiew Open Project Object Tools ‘Window 7

DeH@) e~ X [T LSE a2 2]

[} data.src [B&R Automation Basic] - |O] x|
op & 03 & R E | e
0020 - |
00Z1 (Adr_PvInt:= adr(PvUint) ;** adr() will return the start address
g gzg «4 data.sic [Declaration] [_ O] %]
Mame Type Scope Attribute Walue Owner F
0o0z4
Adi_Pulnt UDIMNT local Mmemary * remanent
0025 Felint UINT local MmOy * remarent
00Z&
0027
ooza { I 7|
0oze =
Al H

For Help, prass F1 [Lire 3 0 2 [EOM2 [OFFLINE I N
Fig. 9.13: Determining the address of a PV using operator adr()

Training ASPROG Page 9.21

Automation B&R Automation Studio™ 9. Data Handling

Example
Create an array of axis structures with array length 3 to provide X,Y,Z axis
coordinates for a CNC system.

Analyze the division of memory for the axis structure using the “adr()” operator and
enter the information in the following sketch.

In the column “Address”, enter the memory addresses that have been determined. In
the column “Memory Content”, indicate the alignment fillers using hatch marks in
the memory locations. In the column “PV Name”, enter the corresponding structure
element.

Note
Determining the memory address of a structure element using “adr(
Topic.Element)”

Memory Content PV Name

Address

16# axis[0] .name
lo#

164 axis[1l].name
164

Fig. 9.14: Memory content

Training ASPROG Page 9.22

Schulung / Training

“Auiomation B&R Automation Studio™ 9. Data Handling

2.6.3 How do I create a dynamic process variable ?

In the declaration, the programmer defines two points:

e Data type

Defines the “mask” used later to interpret the contents of the referenced
address

e Dynamic scope
The address offset is assigned to the PV during runtime

ﬁ' B&R Automation Studio

=] E3
File Edit Inzet “iew Open Project Object Took ‘Window 72
D Edf 2R (X ASE4 @ 52|
[data.src [B&R Automation Basic] =B x| I
op & (@b @ T | F | o 0
0023 - |
00EZ4 | IntTemplate access adr (PwInt) :** Reference to PV PvInt
g g 2 2 o4 data_src [Declaration] [_ O] <]
ooz Mame Tupe Scope Alttribute Walue Owrier
o e - [
aoz9 dynamic | ¥ —
0030 Ao
0031 ol i : : | .
0032 _I
For Help, press F1 [|COMZ |OFFLIME N

Fig. 9.15: Defining a dynamic PV

Training ASPROG Page 9.23

Automation B&R Automation Studio™

2.6.4 Access

9. Data Handling

A dynamic PV can be assigned a memory address during runtime, this procedure is

called referencing or initializing.

As soon as a dynamic PV is initialized, it can access the contents of the memory
location it is “pointing” to according to the data type.

In the program code, a dynamic PV is used like a static PV after initialization.

;** Prg Code **

;** Prg Code **

53 o
PvUsint [3] :=8 &
~ $A003
$A002
;** Prg Code ** = | \Y
23 1001 /

PvUsint[0] :=8

$A000

Fig. 9.16: Access

Training ASPROG

DynPV access adr (PvUsint[1])

Page 9.24

Automation B&R Automation Studio™ 9. Data Handling

Example

Create an array variable with length 30 and data type USINT.
Enter the values in the elements using the PV Monitor.

Create a dynamic PV with data type:

e USINT
UINT
INT

and “place” it over the array variable as mask.

Begin with the start address of the array variable and then ,,shift* the mask by
increasing an offset !

Compare the value interpreted using the mask with the value in the array variable !

Training ASPROG Page 9.25

Schulung / Training

Snutomation B&R Automation Studio™

Example
AutomationRuntime receives positioning data AutomationNet.
This data should be saved in an array variable “receive”, data type USINT[30].
Enter the values in the array variable using the PV Monitor.

Create a dynamic PV with the axis data type for an axis and use it as a mask to
evaluate the data received from the array “receive”.

Initialize the dynamic PV with the start address of the array PV and handle the
selectable data set number using an additive offset.

Memory Content PV Name

T~

‘ receive[0]

dynaxis.name receive[10]

v dynaxis.position

dynaxis.speed

dynaxis.acceleration

dynaxis.active

-

Fig. 9.17: Memory mask

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

2.6.7 Programming Techniques for Dynamic PVs

Preparing dynamic PVs provides the programmer all the possibilities needed to
create flexible, compact and high performance code for automation solutions.

Using pointers, it is possible to access and evaluate the entire application memory.
It is important to guarantee correct, controlled initialization of dynamic PVs.

Humans make mistakes, and programmers are human so certain steps should be
taken when using dynamic PVs to prevent uncontrolled memory manipulation.

Note
Discuss the possibilities for control of dynamic memory access in the group and
keep in mind the need to correctly use this powerful tool — “Dynamic PVs” !

Training ASPROG Page 9.27

Automation B&R Automation Studio™ 9. Data Handling

3. DATA MODULES

3.1 General Information

What is a data module ?

What advantages does a data module offer ?

Creating a Data Module in AS

Reading a Data Module from the Application

Creating and Writing to a Data Module from the Application

Autonomous Data Module Memory

Training ASPROG Page 9.28

Automation B&R Automation Studio™

3.2 What is a data module ?

9. Data Handling

Data modules make it easier to manage information and increase flexibility. A data
module is a memory area which is reserved in a continuous section. The content of
this data module (memory area) can be entered using a simple ASCII editor, the
Data Module Editor using a user defined mask. The content of the data module can
also be written to by the application. The data in the module can be transferred from
AutomationStudio to AutomationRuntime or from AutomationRuntime to

AutomationStudio!

Transfer

en Projkt Objekt Estas Fenster

[DSE@|) Bl =X 5 S

eeeeee

aaaaaa

- Parsmeter fir Verkzeugtisch

Lange | Breite | Hohe | WerKzeugtyp

10000, 2000, 3000 "Sohneider™

| 1 |
4000, 5000, 6000 "Fraser™ -
| bl

Diiicken Sie F1. um Hilfe aufzurufen [Zs4.5p1 Ls51.1 [Ls251 w221 RUN |

AutomationStudio with Data Module Editor

T~

Module header
1000
2000

| |

3000 AutomationTarget LS251

4000
5000
6000

Checksum

Data Content

|

T~

Memory

Fig. 9.18: What is a data module ?

Training ASPROG

Page 9.29

Automation B&R Automation Studio™ 9. Data Handling

3.3 What advantages does a data module offer ?

We are already farmiliar with managing information in process variables which are
physically stored in RAM.

The following questions are often asked concerning the special requirements for
data management in modern automation applications:

e How can I protect against data loss during a warm start or power failure if a
backup battery is not available ?

e How can I protect against data loss during a cold restart ?
e How can I increase the amount of data in a simple and flexible manner ?

e How can I define or limit read and write access rights for a section of my
data ?

The following flowchart shows possible solutions:

PV Data

Warm start safe

Via PC
visualization
Permnanent

memory

Cold start safe

Change code
Via PC
visualization

Fig. 9.19: Data module solutions

Training ASPROG Page 9.30

Automation B&R Automation Studio™ 9. Data Handling

3.4 Creating a Data Module in AutomationStudio

Create a data module in a software tree using Insert:New Object and making the
selection Data object = Data module.

Like every other module, give the data module a unique name which can be used by
the application to read or write data during runtime.

Inzert Object

Select type of the new application object

— Type

™y e - .
L Cyclic: Object

iiiié) Honrepelic bt

& " Suster Object
% " Advanced Objsct

¢ Earl I Hest » I Cancel

Fig. 9.20: Creating a data module

Training ASPROG Page 9.31

“Auiomation B&R Automation Studio™ 9. Data Handling

By double-clicking on the object, an easy to use ASCII editor with syntax coloring
is opened to enter data in the data module.

The user enters data or comments here.

Comments are all started with a semicolon and allow flexible construction of a
mask, e.g.: represented as follows for a table

fﬁ' B&R Automation Studio
File Edit “iew QOpen Project Object Tool: Window 2

IDEHA| s @0 | XE 5L SE (oD D] ?

Model no. Softveare |L0g bookl Descriptionl
E"T"‘ RID_PUMP Module M ame |Version -
2005 L@ —
~ rio_lib Va0
%L SrsERy Data modules
o L
= m m_para W00 =
4| : I LI- B! m_para.DAT [Data module] = M=l E3
A% % % A& S
;ﬁ'*‘k'ﬂ'ﬁ'*‘k'ﬂ'ﬁ'*‘k'ﬂ'#‘k‘k'ﬂ'ﬁ"k‘k#**‘k#*‘k‘k#*‘k‘k#*‘k‘k#*‘k##*‘k# d
prwxFws Machine Parameter Jettings wr&wss#
;ﬁ'*‘k'ﬂ'ﬁ'*‘k'ﬂ'ﬁ'*‘k'ﬂ'#‘k‘k'ﬂ'ﬁ"k‘k#**‘k#*‘k‘k#*‘k‘k#*‘k‘k#*‘k##*‘k#
B e +
;||—— Parameter for Tooltable e |
e e e +
;| Length | Width | High | Tooltype |
B e et +
1000 , 2000 , 4000 . "Cutter"
- [=== |- |
4000 , 5000 , 6000 . "Drill" =
Kl A
For Help. press F1 |Ln5.Col 3 |COMZ |DFFLINE [M

Fig. 9.21: Data Module Editor

Data is separated in a line by a comma or line break.
Data can be entered as follows:

e Numerical in decimal, hexadecimal or binary format
e as ASCII text without zero termination between ‘text’

e as ASCII string with zero termination between “string*
Numerical values can be entered as whole numbers or real values with decimal
point.

Note
The memory reserved for the value, the data type, is determined by the value range
and the number of characters !

Training ASPROG Page 9.32

Automation B&R Automation Studio™ 9. Data Handling

Example
Data module handling

e C(Create the following data module with the name “table”:

’

,——— Positioning data—————

7+ Positioning variant
; A/R..Absolute/Relative
; +— Target pos./Positioning path
; | [DINT]
H | +— Positioning speed
; | | [UINT]
; | | +—Acceleration
; | | | [UINT]
| |

; |
“A“, 00020000, 30000, 10000 ; 1st positioning step
“R“, 00000100, 00200, 10000 ; 2nd positioning step

e Transfer the data module to the PCC and check if the module is on the PCC.

e C(Create another data module with the name “t_text”.
Make sure that the second line is NOT zero terminated.

; 1 2 3

;1234567890123456789012345678901234
“This is our second data module! "
‘This 1s the second line '

e Transfer the data module to the PCC and check if the module is on the PCC.

Data module name: table, t_text

Resource: DAT

Training ASPROG Page 9.33

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

3.5 Reading a Data Module from the Application

The B&R “Syslib” library provides the function blocks needed to allow simple data

module access so the application can read the contents. They can be used as shown
in the following diagram:

Search for data module ID

using names else
DA _ident(“name”,..,adr(ID))
\

Check the FBK status value
if statusDA_ident = OK then

Get the start

address of the data
using the ID else
DA _info(ID,...,adr(SA))

Check the FBK status value
if statusDA_info = OK then

Read the data
using
dynamic PV access SA
or
DA_read(ID,...)

Error handling !

|
|
|
|
|
>
I
|
|
|
|

\/

Fig. 9.22: Reading a data module

Training ASPROG Page 9.34

Automation B&R Automation Studio™ 9. Data Handling

Detailed information about function block parameters can be found in the
AutomationStudio online help.

&} B4R Automation Studio M=l
File Edit “iew |nzert Open Project Object Tool: Window 2

DEE@ 2B - (XE| 0SS 0|2

[data.zrc [BER Automation Basic]
op SR S A
0025 | |Insert functionf 1y T T o Da_ident: UINT =
00z & VAR TNPUT
ooz7 name_ p:UDINT;
00Z8 grp:U3INT;
oozg mo_ident: UD] Assign Data Type
0030 *] .
. Cateqony: Azzigr e ba:
0031 DA ident(name p, grp, e -
003z IFunctlon blocks 'l _ SM_release ;I oK I
0033 HIFEF ERRxwarming
|-tel ERR warning Cancel
0034 - = =
R Aty |1 ZII EE ERFR_fatal)
HEEl ERFsread Help
DO3E Length: ISU ZII — ERF_read
] L#8 DIs_st
go3g e 8 DIS_chr
nn=a9 2
] Lib: 55_LIB Il DIS_ck
er:0.00 — Did_create J
_ S = i
Scope: -
. . Fetch the data DA_read
Irserts & call bo function or a function block madule identifier — nt j
Fig. 9.23: Step 1 Shiow external libraries I
Filter:
[pa
Fig. 9.24: Step 2
E? B&R Automation Software Help M= E3
e o &
Auzblenden Suchen ZATIE Wonwarte abbrechen Aktualizieren Startzeite Drucken Optionen

I

Inhat |Igde>< I Suchen I Favariten |

= m AutamationStudio ;I
@ Erste Schritte:
@ Programmiersprachen

SYS_lib - DA_ident()

Liefert die Ident-Mummer eines existierenden Datenmaoduls.
Diese Ident-Nummer wird in anderen Datenmodul-Funktionen

= [Liraries) zur Identifizierung verwendet,

Allgemein

@ Begriffsdefinition
=l ([B+R Standard Libraries Parameter

2] Libraries
@ Ubersicht aller Libraries -
@ asCont 1/0 || Parameter || Datentyp | Beschreibung
@ stath IN || name_p UDINT Name des
@ BRSystem

= Datenmoduls
@ cano)
{Parameter wird als
@ DvFrame 2
Zeiger auf den
@ madnt)
q Datenbereich

@ 10.Lb Ubergeben)
@ OPERATOR)
e SR M |[grp USINT Gruppennummer
= [5vs b {Standard = 0)

@ slgemeines -

= () Funktionstliicke und IMN || mo_ident UDINT Ident-Mummer des

1 & ayT-Frhandling = Datenmoduls
< | »
L il T ctatoe LITRIT Coahlarnimmmmnr {0 — ;I

Fig. 9.25: Help information

Training ASPROG Page 9.35

Automation B&R Automation Studio™ 9. Data Handling

Example
Write a task to read positioning data from the data module “table”.

e To do this, create a dynamic structure with length 2 over the table.

e The data should be copied to a static PV with positioning structure type.
The following possibilities are available:
memcpy (.. .)
DA_read(...)
Read the respective online information concerning the function blocks and
select one of the possibilities.

e Use the INIT SP to determine the data module system information

e Overwrite one of the values from the static structure PV and then from the
dynamic structure PV in the PV Monitor and check the reaction of

AutomationRuntime !
Program name: da_struc
Resource: C#4

Training ASPROG Page 9.36

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

Example
Write a task that reads the following information from the data module “t_text”.

e Copy the first line of your data module to the byte array “ASCII_1" using the
function:
“strepy(target address, source address)”.

e Read the 3rd byte from the data module and write it to the variable
“spec_byte”.

e Copy the second line of your data module to byte array “ASCII_2”. To do
this, use a loop and the dynamic PV “DYN_PV™.

Program name: da_read

Resource: TC#4

Training ASPROG Page 9.37

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

3.6 Creating and Writing to a Data Module from the Application

The B&R “Syslib” library provides the function blocks needed to allow the
application to create a data module used to save user parameters during runtime.
Write access to the data module takes place in a controlled manner using a write
function which automatically carries out the checksum correction. These functions
can be used as shown in the following diagram:

Create a data module
and define name, length, etc.
DA_create(“name”,..,length,...)
DA _ident(...)

\
Check the FBK status value
if (statusDA_create = OK) and (statusDA_ident = OK) then

Write data
in data module using ID
DA_write(ID,...)

Check the FBK status value
if statusDA_write = OK then

Save the data module
in FIXRAM or USR-ROM via
DA_fix(ID,...)
DA _burn(ID,...)
DA_copy(ID,...)

Error handling !

v

Fig. 9.26: Creating, writing to and saving a data module

Training ASPROG Page 9.38

Automation B&R Automation Studio™ 9. Data Handling

Example
To practice creating and writing to data modules, write a task that carries out the
following actions:

e A data module which is initialized by a structure should be created when a
positive edge occurs on an input.

Struktur: init_da

.USINT var: USINT 1
JUINT var: UINT 1
.USINT_array: USINT 10 (String)

If the data module was already created, all necessary parameters,
e.g.: module length, should be requested from AutomationRuntime.

e The structure has to fit in the data module 3 times.

e The entire data module should be created using initialization values,
with values <> 0

e The values are read using dynamic variables to check the content of the data
module.

e Check the length of the data module. Does it correspond to the length you
expected?

e Change the element UINT_var in the data module when a positive edge
occurs on an input. An analog value should be written to the variable.

Program name: da_first

Resource: 77

Training ASPROG Page 9.39

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

3.7 Autonomous Data Module Memory

A data module created by the application using DA_create(...) is normally placed in
USR RAM so that the data can be manipulated.

If it is also necessaray to protect the information in the data module during a warm
and cold start, the data module can be copied to USR ROM.

If the information in the data module should be changed again, it must be saved in
USR ROM again and the old memory is marked as being bad. Memory that is
marked as being bad can be released again by deleting the USR ROM, but all tasks
are normally lost.

Therefore, AutomationRuntime provides the application a special area in FLASH
(DM_USER_FLASH) for autonomous management of data modules on the
following AutomationTargets:

e B&R2003: CPx70, CPx74
e B&R2005: XP152, IF152, IP161, CP260, IF260
e B&R2010: IF100, IF101

This 64 kByte memory area can be manipulated by the user. The user can delete this
area of the FLASH independent of the USR ROM.

AutomationRuntime provides the following services in the library “DM_LIB.BR” to
manage this memory:

e DMclear() . Delete DM USER FLASH
e DMstore() . Store data module in DM USER FLASH
e DMfree() .. Information, how much DM USER FLASH is still free

Training ASPROG Page 9.40

Automation B&R Automation Studio™ 9. Data Handling

4. MEMORY MANAGEMENT

4.1 General Information

We will summarize memory management using the folowing questions.

Memory Access
Who can save data ?

Location
Where can data be saved ?

Memory Organization
How can information be saved ?

Who can reserve and allocate memory ?

Training ASPROG Page 9.41

Automation B&R Automation Studio™ 9. Data Handling

4.2 Memory Access

Who can read, write and store data ?

In general, there are two possibilities for memory access:
access by the user and by the system.

User

° Application
Programs work with PVs

° AutomationStudio
Install modules, watch, etc.

° Operator + Visualization
Human-Machine Interface (HMI)

System
° Internal variables/data from AutomationRuntime
° Input data from hardware modules
° Communication using Interfaces

These two types of tasks are very different and therefore have different requirements
for storing and accessing data.

Fig. 9.27: Memory access

Training ASPROG Page 9.42

“Auiomation B&R Automation Studio™ 9. Data Handling

4.3 Location

We have found out that data are needed by different users to complete their tasks.

The data is stored in memory according to the requirements mention previously.
Two subdivisions exist:

e Physical location

e Logical location

The characteristics and purposes of these two locations will be repeated and
summarized in the following sections.

physical

Fig. 9.28: Memory locations

Training ASPROG Page 9.43

Automation B&R Automation Studio™

4.3.1 Physical Memory Locations

An AutomationTarget has various physical memory media.

Effect after: Effect after:
modular | onboard Warm Start Cold Start Special Properties

J All memory locations | All memory locations

DRAM have the value 0 have the value 0 Very fast access

All memory locations | Each bit can be reset
SRAM / / Memory is remnant | have the value 0 individually
FLASH / / Memory is remnant | Memory is remnant | Nonvolatile
Tab. 9.4: Physical memory

Notes

Concerning the terms above:

9. Data Handling

e modular............... modular user memory, e.g.: Memcard or MExxx
e onboard................ memory is directly in the AutomationTarget module
e remanent............... memory is not changed by AutomationRuntime

A detailed description can be found in the hardware manual, the AutomationStudio

online help or on the Internet homepage.

Training ASPROG

Page 9.44

s BAR Automation Studio™ C omrmang

4.3.2 Logical Memory Location

The memory is provided to AutomationRuntime using physical blocks.
AutomationRuntime separates the physical memory into logical units. It separates
the RAM and FLASH into a User and System area. The User and System areas are
also separated into smaller, independent areas.

PMEM
DPR
FIXRAM

User

SYSTEM STACK

[al

UUUUOUUUTUUUUUEUUEEE

User USR ROM

UUUPUUUUUTUEUYEHUUEUEUEY

DM_USER

Fig. 9.29: Physical and logical memory locations

Automation B&R Automation Studio™

9. Data Handling

In the following table, the locations are summarized again including typical content
and warm and cold start behavior.

Effect after Effect after
%‘ Name Content Warm Start Cold Start Special Properties
User USR RAM Program + Memory is All memory Data in modules has
Data modules | remanent locations have the | checksum protection
value 0
USR ROM Program + Memory is Memory is Data in modules has
Data modules | remanent remanent checksum protection
FIX RAM Program + Memory is Memory is Cold start safe
Data modules | remanent remanent
DM_USER | Data modules |Memory is Memory is Flash can be organized and
remanent remanent deleted by the application
DPR Local + Memory is All memory Access of PVs also possible
global PVs remanent locations have the | from other automation targets
value 0 & PVI
Permanent Freely Memory is Memory is Cold start safe
Memory configurable remanent remanent
Temporary Freely All memory All memory Large memory blocks can be
Memory configurable locations have locations have the |reserved during runtime
the value 0 value 0
Stack FBKs & All memory All memory For user function blocks
Freely locations have locations have the
configurable the value 0 value 0
SYS ROM System + Memory is Memory is Modules are also activated in
System Data modules | remanent remanent diagnose mode
Static RAM | Automation All memory All memory Area protected from the user
Runtime locations have locations have the | for logbook, system tables,
the value 0 value 0 etc.
Stack Automation All memory All memory For system function blocks
Runtime locations have locations have the
the value 0 value 0
Tab. 9.5: Logical memory

Training ASPROG

Page 9.46

Schulung / Training

Automation B&R Automation Studio™ 9. Data Handling

4.4 Memory Organization

B&R AutomationRuntime provides various easily implimented methods for storing
data.

This allows various requirements to be met e.g.: data with defined access rights.
All AutomationRuntime versions offer the following possibilities:

e Process variables
e Dynamic memory allocation

e Data modules
Process variables allow simple and direct access of data memory using symbolic
names.
Dynamic memory allocation allows flexible memory organization during runtime.

Data modules capsule data in protected areas which include all B&R module
characteristics e.g.: checksum test, download, upload, data editor in
AutomationStudio, etc.

Fig. 9.30: Memory management

Training ASPROG Page 9.47

Automation B&R Automation Studio™ 9. Data Handling

Before we can access the memory (use it), someone has to reserve it for us. The
memory must be organized.

This is important so that each user receives a separate, assigned area.
Memory can be organized in two ways:

e static

e dynamic

Static memory is automatically reserved by the compiler when using PVs and the
relationship between PV name and the reserved memory address is entered in a PV
table.

Dynamic memory is requested from AutomationRuntime by the user in the
application using FBKSs and referenced using a dynamic PV. For programming,
requesting memory is referred to as “Allocation”. Dynamic memory can be
requested during runtime with a selected size, therefore the user has very flexible
memory organization which can be changes as desired during runtime.

$A001

o .
.
K ‘e,
0
— @ —
g
o
of

if PV1 > 100 then

PV1

if dP_V > 200 then

apPVv

$B002

USR RAM

Fig. 9.31: Memory organization

Training ASPROG Page 9.48

Sautomation B&R Automation Studio™ 10. Timing Processor Unit

TIMING PROCESSING UNIT

T OVERVIEW ..ottt 2
2 TIMING PROCESSING UNITcoiiiiiiiieiieieeeeee e 3
2.1 What is a Timing Processing Unit ?.........ccccoecveevnieennieennnne. 3
2.2 Block Diagram of a Processor with TPUccccoeeenee. 3
2.3 FUNCHONS ...eviieiiiieiiiie ettt ettt e 4
3 TPU MODULES ...ttt 5
3.1 B&R AutomationTarget 2003cccocveeviiieniiiiiniieeiee e 5
3.2 B&R AutomationTarget 2005coooveeviiiiiniieiniieeieeeee 6
4 LTX FUNCTIONS ..ottt ettt 7
4.1 Configuration of the Hardware..............ccooveeriiinieiniiennnne. 7
4.2 Use of LTX FUNCHIONSooviiieiiiiiiiiieniieeeiieeeiee e 8
4.3 Example Gate Measurementcoccveeeveveenieeenieennneennnne 9

Training ASPROG Page 10.1

Schulung / Training

Sautomation B&R Automation Studio™ 10. Timing Processor Unit

1 OVERVIEW

Timing Processing Unit
A Timing Processing Unit is used when creating solutions for time critical
applications because it allows certain events to be reacted to in the us range.

TPU Modules
This chapter provides an introduction to the major parts of a TPU and an overview
of the hardware available for such applications.

LTX Functions
Selecting and inserting functions used to operate a TPU in Automation Studio are
explained in detail here. Examples are also provided.

Training ASPROG Page 10.2

Automation B&R Automation Studio™

2 TIMING PROCESSING UNIT

2.1 What is a Timing Processing Unit ?

10. Timing Processor Unit

A Timing Processing Unit, (TPU) is an additional hardware unit which supports the
CPU. It can be used to execute simple and also time critical functions without

loading the CPU.

With each action that occurs, e.g. positive edge on an input, an LTX function is
called. These functions are processed by the TPU. This allows reaction times in the

us range.

LTX ... Logic Timing

Functions

2.2 Block Diagram of a Processor with TPU

RAM

Code created by
TPU Code Linker

{}

TPU

Timing Processing Unit

v

78N
v

Intermodule Bus

i

CPU
Central Processing Unit

LTX function
called in the task

Fig. 10.1: Block diagram of a processor with TPU

After selecting the desired functions , the TPU Code Linker in Automation Studios
creates code which is placed in TPU RAM during a warm start by the CPU on TPU

capable modules.

Then this memory area can only be accessed by the TPU.

Training ASPROG

Page 10.3

Automation B&R Automation Studio™

2.3 Functions

Input recognition / input edge counter

Output comparator

Pulse width modulation

Synchronized pulse width modulation

Period measurement

Period measurement with edge recognition

Position synchronized pulse generator

Stepper motor control

Gate measurement

Training ASPROG

10. Timing Processor Unit

Page 10.4

Sautomation B&R Automation Studio™ 10. Timing Processor Unit

3 TPU MODULES

3.1 B&R AutomationTarget 2003

DI135, DO135, AI261, A1294, AI351, AI354, A1774, AO352, NC161

These screw-in modules can also be operated on the left of the CPU. However, the
integration of LTX functions is only possible on the CP interface.

3.1.1 DI135
Features:
e 4 high speed digital inputs 24VDC
e Incremental encoder operation 50 kHz
e Event counter operation 100 kHz
e | comparator output 24 VDC
Area of use:

e Period measurement
e Gate measurement

e Incremental encoder / encoder

Typical applications:

e Bottling system, etc.

Training ASPROG Page 10.5

Automation B&R Automation Studio™

3.1.2 DO135

Note

Description:

e Digital output module with 4 FET outputs
e Switching voltage 12-24VDC
e Continuous current max. 0.1A

e Max. switching frequency 100 kHz

Area of use:

e Pulse width modulation
e Stepper motor control
e Absolute encoder (SSI)

Typical applications:

e Temperature control for extruders

e Stepper motor control, etc.

10. Timing Processor Unit

All other modules and detailed information are contained in the 2003 User’s Manu-

al.

3.2 B&R AutomationTarget 2005

e [PI51
e [P152
e [PI61
e 1IP350

All of these modules have high speed analog / digital inputs and outputs which
can be accessed using TPU functions. Detailed information and areas of use can be

found in the 2005 User’s Manual.

Training ASPROG

Page 10.6

Automation B&R Automation Studio™

4 LTX FUNCTIONS

4.1 Configuration of the Hardware

In order to work with LTX functions, the required hardware modules must be
inserted in AS. The hardware definition can take place in two ways.

o [.oad hardware configuration from target system
This method can always be used,
if the hardware is already available during project creation.

e Insert hardware manually

Fﬁ' B&R Automation Studio - [as_tpu_1.GDM [Project]]

I File Edit “iew [|nzet Open Project Object Tools window 2 _|ﬁ'|£|
NS EHE|) el o |X®f«SE |4t 2|2
todel no. I Slat 10 |Descriplion|
E'r::’" A5_TPU_1 Marne | Drats T_l,lpel P Mame I Fiermark I
= 20s EF digital output 01 INT P/
i7] 7CP474.E01 0 digital output 02 IMT b
oL oToNae7 01 digital output 073 INT P
"b L0z digital output 04 IMT Fhadbd
g Inzert ...
g Delete
5 L T b = ster
Dizable
Froperties ...
4| 3
x|
Al
=
Output IDebugl Fird iy Filesl
Far Help, press F1 |CDM1 |DFFLINE A
Fig. 10.2: Inserting hardware in AS
Training ASPROG

10. Timing Processor Unit

Page 10.7

Automation B&R Automation Studio™

4.2 Use of LTX Functions

10. Timing Processor Unit

AS provide the user with a large selection of LTX functions. After inserting such a
function block, code is generated which is stored in the folder CPU -> System.
This code is copied to TPU RAM after a warm start.

ﬁ‘ BL&R Automation Studio - [as tpu_1.GDM [Project]]

_r File Edit iew |ngert Open Project Object Tools Window 2 8| x|
DeHdEes - (xR macE|a w97 |
Madel no. [Siat || Software | Logboak | cani/0] TPU | Dessription |
E‘E’* A5_TPU1 M adule Mame IVersion I Tranzfer to I Size [bytes)
BH 2003 | =y
el o : I'ﬂ-“ Syztem
e 7DI1357 || - ¥ 210 User ROM 752
e 001387 02 400 UserROM 9672
B 03
3 04
] 1
Fig. 10.3: Importing the library
4.2.1 Inserting LTX Functions
To integrate this FBK, select the TPU tab.
iif B&R Automation Studio - [az_tpu_1.GDM [Project]] _ (O] x|
I File Edit “iew Inzet Open Project Objsct Tool: ‘wWindow 2 _|ﬁ'|1|
D H@s Bele = ([XmFHese B Ao o2
Model no. |5|'3t Softwarel Log bookl Cadyo TRU I@liptionl
E':;-_"' AS_TPU1 Charinel I FEK-channel Description I;
: ,_itm i SlF CP474
]
" = Slat 1/ D135
N7 01 [‘}e% "
& 7001357 nz L@ N2
9 0.3 Lo 3
5 04 La. |4
9 ! LS Slat2 /D01
L6, Ut
LG, OUT 2
HG OUT 3
e, ouT4
=5 Slat 3/ free
@, Vittual In
@, Vittual In
@, Vittual In
L@, Vittual In
Y Slat 4/ free
@, Vitual In
@, Vittual In -
4| | o | L H
For Help. press F1 [|COM1 |OFFLINE A

Fig. 10.4:

Note

Integrating TPU functions

The TPU tab is only available for modules with TPU functionality.

Training ASPROG

Page 10.8

Sautomation B&R Automation Studio™ 10. Timing Processor Unit

4.3 Example Gate Measurement

The frequency of a signal should be determined.

The signal comes from a digital output which toggles and is connected with the
DI135 input.

e Select a suitable LTX function block
e (alculate the frequency in a timer task class

e C(reate task with toggle output

Project Name: tpu_prol
Task Name: frq_cnt

Resource: T#1

Task Name: toggle
Resource: ?7?

Training ASPROG Page 10.9

Schulung / Training

Automation B&R Automation Studio™

4.3.1 Gate Measurement Instructions

10. Timing Processor Unit

I‘ﬁ']“ B&FR Automation Studio - [as_tpu_1.GDM [Project]] | (O] x|

_I‘ File Edit “iew Inzett Open Project Object Took Window 2 -|5|1|
s I N e e e
Model no. | Slat Softwarel Log bookl CaM /o TRU IDescriplionI
E’E‘ AS_TRU_1 Channel I FEE. I FEBE.-channel Description I;
i ~2EIDB BF Sigy CPaT4
1
Slot 1/ DI135
|03 7 01 "
& 7001357 0.2 _,3’ M2
gﬂ 03 L& N3 Eemoyve FER
0.4
9 7 1 L&, N4 v In
; R Slt2 /00135 Out
R OUT1 irtual [k
G OUT 2 irtuial Ot
FG OUT 3
LGy OUT 4 Low
R Slat 3/ free v Middle
—'3, Yirtual In High
8, Vittual In -
FO, itual In Properties ...
L@, Vittual In e
=5 Slat 4/ free
@, Vittual In
@, Vittual In -
o) L. I
4| | v |l =
Far Help, press F1 [|COM1 |OFFLINE i

Fig. 10.5:

Insert an LTX FBK

l?q" B&R Automation Studio - [as_tpu_1.GDM [Project]] - O] x|

_f File Edit “iew Inzeit Open Project Object Took ‘Window 72

=l x]

D @) 2o =[x @5 <cE |4 @ 22|

[Slot
BP
LPAMEDT G0
L TDNEET 01
%y DMET 02
-] 03
-] 0.4
| 1

Softwarel Log bookl CaM /0 TRU IDescriptionI

Inzert FBK uzing channel 1

| Description | -

| FEF. I Descriptio

n -

FI [Digital input
(] Encoder
=13 Time measurement
[_] Differential time measurement
Gate time maasurement with extern
R Gate time measurement with intem:
i

dl |

! Gate Time M

0k, I Apply | Cancel | =
« | > _|J
Far Help, press F1 [|COM1 |OFFLIME | r 7
Fig. 10.6: Select the LTX function
Training ASPROG Page 10.10

Automation B&R Automation Studio™

Note

10. Timing Processor Unit

After selecting the FBK, select the CPU tab again for programming. In this way, the
code for this function is automatically generated and integrated in CPU->System.
The extended help can be opened by pressing the F1 key with the TPU tab selected.

Additionally, a library is imported where the FBKs used are entered. Now it is

possible to insert the function blocks in the program.

Inserting a Function in LAD

& BLR Automation Studio - [tpu_fubl SRC [Ladder Diagram]]

J O = n ﬁ | etk Chrl+linz ?l Ijx ot @

LContact -

S o L T 1 e v b e g | 3 51

—_—] Jump [E—
oo Function. . f

Lnalag Yalle Space

Colurmn Inz
Bow Shift+lng

Fig. 10.7: Inserting the FBK in LAD

Aszzign Data Type HE

Categary: Azzign item to:

[Function blocks '~ [=T@ cra7am ok |
(=8 [T5cni0 —

#He Ph_lib S |

Aurray: I'I ﬂ Ej rur;ime
Help |

Length [0 =]

—Info

Lib: CP474000

Wer 000

Type: Function Block
Scope:

Gate Time
Measurement 1
[intemal]

Show external libraries
Filter:
LTxcpil

Fig. 10.8: Select the desired LTX FBK

Calculating the Frequency:

Using the FBK for gate measurement, the frequency of the
signal can nopw be calculated.

Note
The entire solution can be found in help

Training ASPROG

Page 10.11

Automation B&R Automation Studio™

LIBRARY MANAGER

L OVERVIEW ..ottt 2
1.1 FUNCHIONS ..ottt 3
2 LIBRARY MANAGERcocciiiiiiiiiiiieteeeeseee e 4
2.1 General Informationc..ccoceeviiriiinieniienicnicecceen 4
2.2 Term Definitionsccceecveeieenieniieiiienieeieenicee e 5
2.3 Library GUidelinesceocveeriieeriiieeniieeiee e 6
2.4 Global Settingsceevveeeriieiriieeiie ettt 8
3B&R LIBRARIESoooiiiiiieeeeeetee et 9
3.1 Overview of Standard Librariesc.ccccocerveiniiniiincnnenn. 9
3.20n1N€ HElp coooeveieiiiieeiieeeeeeeeeeeeeee e 10
3.3 InSert LiDraryooooveeiiiieiiieiiieeieeeee e 12
4 USER LIBRARIES ..ottt 15
4.1 Creating a Librarycccceevveeriiieniieeiieeiee e 15
4.2 Creating an IEC Function Blockccoccevviiiiniiiinnnns 18
4.3 Function Block Propertiescccccceeevveeriieeniieeniieenieens 19
4.4 FBK INEIfacecovuviriiiiiiiiiiicciececeececeeeee e 20
4.5 Source Code for the Function Blockcccceeiiinieniien. 21
4.6 Creating Online Helpccccoeviieniiiiniiiiiecece e 24
4.7 Creating a C LiDrarycoooveeviieeniiieeniieeeiiecciee e 24
4.8 Reusing Librariesccccevcveeevieeeiieeniieeniieesiee e 25
5 PG2000 LIBRARIESooiiiiiiiieteeeeenteeee e 27
5.1 PG2000 Porting GUIidecocueeerieeinieenieeiiee s 27

Training ASPROG

11. Library Manager

Page 11.1

Schulung / Training

“automation B&R Automation Studio™ 11. Library Manager

1 OVERVIEW

Library Manager
The Library Manager is used to manage all libraries used in a project. This chapter
provides a detailed description of the characteristics and possibilities of this tool.

B&R Libraries
This chapter contains an overview of the B&R Standards Libraries and an
explanation of how they can be inserted in a project and managed.

User Libraries
In addition to the standard B&R functions, the user also has the possibility to create
function. These functions can be grouped in libraries.

PG2000 Libraries
How can I add PG2000 Libraries to AS ?

Training ASPROG Page 11.2

“automation B&R Automation Studio™ 11. Library Manager

1.1 Functions

1.1.1 Advantages of Functions

Automation Studio provides many standard functions for the user. It is also possible
to create functions. The use of functions has the following advantages.

Saves time
It is possible to use existing functions instead of having to create them.

Programs are clearer and easier to service
The program code contains parameters which are easy to understand and
check.

Prevents unnecessary errors
B&R standard function blocks are already tested, which prevents possible
typing errors or mistakes.

Standardization of complex tasks

Large or commonly used program sections (positioning, control algorithms,
etc.) are thought through once and written in a form that allows users to
easily define parameters later.

Multiple usage in further projects
A function is often used multiple times in a project which allows the solution
to be standardized and simplified.

Training ASPROG Page 11.3

Automation B&R Automation Studio™

2 LIBRARY MANAGER

2.1 General Information

11. Library Manager

The Library Manager (LibMan) is used to manage all libraries which are integrated
and defined in project.

With Library Manager, you can:

e Insert B&R standard libraries in a project

e Insert other libraries in a project

e C(reate and manage libraries

e Manage libraries created in PG2000 with AS

The Library Manager is started using the menu item Open: Library Manager.

ﬁ“u‘ BER Automation Studio - [asprog3. GDM [Project]]

J- File Edit “iew Insert | Open Project Object Tool: Window 2 _|5’|5|
DS |G ¢ o ghuelee A B[R amoolR)
Libramy Manager
Model no. " ok | CaM 140 | Deseription |
k
El:;"' A3PROGE 2= . I\-"ersion I Tranzfer to I Size [bytes)
B 2005 Declaration
: WhEteh [t Iﬂ -[10ms]
[Trace ' 0.00 U zer Rakd a
L, 3014756 Test
b 3004736 - st Y222 UserROM @00
7, 33506 3 E geloader ¥1.30 UserROM 3898
A, 403;0e 4 standard v1.34 UserROM 11776
=,§= AMWR0EDT B
| £
4 »
|
=
=
Output | Debugl Find in Files
Dpens the library manager Lire 3 of 7 |COM1 |OFFLINE 7

Fi

g. 11.1:

Opening the Library Manager

Training ASPROG

Page 11.4

“automation B&R Automation Studio™ 11. Library Manager

2.2 Term Definitions

Function
A function is a program organizational unit which returns exactly one value. A
function has one or more inputs but only one output. Therefore it can be called in
programs in a high level language directly as operand.

e.g.: 1if edgepos(gDiMotorStart) = 1 then

Function Block
The FBK ist a program organizational unit which returns one or more values. It has
one or more inputs and outputs.

Component
Function or FBK

Library
A library is a group of several components.

B&R Library
The libraries supplied by B&R which are used for B&R system software and
hardware functions are described as standard libraries.

User Library / Third Library
Library created by the user or by a third party.

Binary Library
A library without source text.

Source Library
A source library contains the source text for the components. The source code can
be changes at any time.

IEC Library
A library with components which are written in the languages B&R AB, ST, etc.
When creating such libraries, one of these of these languages can be used for each
component.

C Library
A library which is only written in ANSI C. All components are coded in this
language.

Training ASPROG Page 11.5

“automation B&R Automation Studio™ 11. Library Manager

2.3 Library Guidelines

Libraries are designed to be used again and again. Therefore it is especially
important that they are well planned. This chapter shows a short section of the

library

guidelines. The complete chapter is contained as an appendix.

2.3.1 Assigning Library Names

In order to make libraries easier to identify and service, they should be assigned
clear and meaningful names.

A library should start with three characters which clearly identify the
designer (company) of the library. This character combination can consist of
letters and/or numbers.

This character combination should be used for all libraries from the
company.

Library names are presently limited to a maximum of 8 characters and are
defined as follows:

dddLIlll
Abbreviation: | Meaning
ddd Code for the designer
L1111 Name of the library
Tab. 11.1: Library name
To improve clarity, the part of the name after the designer should begin with a
capital letter. The company code should begin with a small letter so that library
names also comply with the format for for variables.
Examples
br Arith
br_ Code for B&R
Arith Name of the library
brTrRGL
br Code for B&R
Tr Code for training
RGL Code for control components.

RGL is written in capital letters because this will also be the
code for the components.

Training ASPROG Page 11.6

Schulung / Training

“automation B&R Automation Studio™ 11. Library Manager

2.3.2 Assigning Component Names

Assigning function block and function names plays a very important roll in the
appearance of a library. The names should indicate the library that the component
belongs to and also has to indicate the functionality.

Principally, 32 characters are available in AS for component names.

The first word indicates the library. At least two characters and a maximum
of four characters must be used.

All components in a library begin with the same characters
e.g.: ctrlValve, ctrlMotor, etc.

Only the first letter of the individual words are capitals

The functionality is then written in a clear form

Examples: ArithSum,

ctrlHeatValve

2.3.3 Version Management

Version numbers should be assigned to all libraries. The following format should be
used for the version entry.

The version number consists of four characters.

X.yy.B:

X..

B..

Increased by one for large changes. (yy becomes 0)
Increased by one for all changes

Used for Beta versions

Training ASPROG Page 11.7

Schulung / Training

“automation B&R Automation Studio™ 11. Library Manager

2.4 Global Settings

General LibMan settings can be made for the project using the menu item
Project: Settings. The dialog box can also be reached using the menu item
Edit: Properties if a library is selected in the left LibMan area.

Settings

|EC Editar Seftings] Maming conventions] b ation] Build % Tranzfer]
L Compiler Library b anager] Ladder Frint Settingz l

@ Library Manager

Standard directon;
CABRAUT OMATION azhlibransW 02224

Library directonies:

Add...

Delete

Default target memarng for hbranes:

User ROM =l

oK | Abbrechen|

Fig. 11.2: LibMan settings

e Standard directory
Shows the valid library standard directory. The libraries for the project are be
taken from here. The path is automatically set by AS and depends on the
defined operating system version.

e Library Directories
Additional directories can be entered where LibMan can search for libraries.

e Standard Target Memory for Libraries
The target memory for libraries can be set here.

Training ASPROG Page 11.8

Automation B&R Automation Studio™

11. Library Manager

3 B&R LIBRARIES

3.1 Overview of Standard Libraries

Library Short Description

ASControl Support of hardware modules

ASMath Mathematics functions not covered by the Operator
library

ASString Functions for memory manipulation and string handling

BRSystem Functions for CPU operation

C220man Functions for panel controller operation

CAN_1ib Functions for CAN controller operation

CANIO Functions for B&R2003 CAN node operation

Convert Conversion functions according to IEC61131-3

DM_1ib Storage of data modules in nonvolatile memory

DRV_3964 3964R protocol

DRV_mbus Modbus protocol

DRV_mn MiniNet protocol

DVFrame Frame driver library for serial interface operation

FDD_1lib Serial floppy drive operation

IF361 Operation of IF361 interface module (Profibus DP Slave)

IF661 Operation of IF661 interface module (Profibus DP Slave)

INAclnt INA2000 client communication

IO_1ib Functions for I/0 module operation

NET2000 NET2000 protocol

Operator IEC61131-3 standard functions

PB_lib Profibus protocol (FMS)

PPdpr Functions for exchanging data between CPU and PP

RIO_1ib Functions for remote I/O operation

Runtime Functions for internal support

Spooler Allows spooling of data on IPs

Standard IEC61131-3 standard functions

SYS_1ib Various system functions

TCPIPMGR Functions for exchanging data using UDP or TCP

Tab. 11.2: Library overview

Training ASPROG Page 11.9

Schulung / Training

Automation B&R Automation Studio™

3.2 Online Help

11. Library Manager

In AS, an online help system is available for the user with detailed descriptions of
all libraries. The help can be opened by pressing the F1 key in LibMan .

The online help offers the user various possibilities to search for topics.

E? HTML Help

Hide

Stop

=

Locate Back

=

Fariard

=1 E3

BN

Refresh Home Print Ophionz

Cantents | Index I §earch| Fa\ror_itesl

B
=0
=l

4]

Readme

|»

AutomationStudio

L] Libraries
@ Allgermein
5] Begriffsdefinition

= m E+FR Standard Libraries

@ Libraries

@ Ubersicht allsr Librarie
@ AsConk
@ asmath
@ assiring
@ BRSwskem
@ canio
@ can_Lib
@ COMVERT
@ DFrame
@ Fact
@ 1Fest
@ madnt
@ 10Config
@ 0Lk
@ CPERATOR

5

B&R Industrie Elektronik

Thr weltweiter Automatisierungs Partner

Shows an overview of the help topics. Clicking on the main topics opens the
lower level topics. Figure 11.3 shows a sample of this page.

Makes it possible to search for functions or topics.

Search for certain terms in all topics.

Fig. 11.3: Online help system
e (Contents
e Index
e Search
e Favorites

The path to commonly used help topics can be saved here. Simply click on
the topic and the corresponding help page is opened.

Training ASPROG Page 11.10

_

Example
Open the online help and search for information concerning the function block
TON_10ms.

Schulung / Training

“putomation B&R Automation Studio™ 11. Library Manager

3.3 Insert Library

Using the menu itemInsert: Library or by clicking on the symbol , the required
dialog box is opened.

Inzert Library | x| |

— " Mew Librarny

To create a new libramy pou must assigh an unique name.

Marme: I

Tope: &) (B iforan £ | EE-iran (el B&H Aotamation Basiz)

@dd Library \,

Select one or more of the available libraries in the list below or use
the browse button to find additional branes.

Library | Path ;I
RIO_lib CABRAUTOMATION s\t
Sv5_lib CABRAUTOMATION asAE

| TCPIPMGH CABRAUTOMATION bashit
Standard iC b tornatio ShLil

brar
-
‘ ol

Ok, | Cancel | Help |

Fig. 11.5: Insert B&R library

The list only shows libraries found in the standard directory and library directories.
However, it is possible to search for libraries in other directories using the Browse
button. The dialog box that is opened is used to navigate in the directory tree. The
“OK” button is only activated when a valid library structure is found in the

directory.
& B&R Automation Studio - [azprog3 [Library Manager]] M=l E3
@ File Edit “iew Inzet Open Project Library Object Tool: ‘window 32 =& x|

RS E R
| B e)

Mame I Type I Wersion I; [reclaration |
B L'b'a"'i_s Bi V109 Mame I Tupe Sco
< runtime inary . :
EHE standard Binary W1.34 L ; BOOL VAR
& cTuD Function Black % P TIME AR
Hg] cTo Function Block %+ 0 BOOL WA
| CcTu Function Block %+ ET TIME WAH
H F_TRIG Function Block % StartTime TIME A
o FR_TRIG Function Block oM BOOL WA
o 5R Function Block
= s Furction Elock % Restat UDINT WaH
| SERA Function Block
i Function Black
o TOF Function Block
| TF Function Block
= TOM_10ms Function Block
o TOF_10ms Function Block _—
= TP _10msz Function Block
| LEM Function
m LEFT Function
| RIGHT Function
Fig] Mo Function 4 | ;
EIE] COMCAT Funition =
For Help, press F1 [[COM1 |DFFLINE |

Fig. 11.6: Standard library inserted

Training ASPROG Page 11.12

Automation B&R Automation Studio™

11. Library Manager

If you select the library on the left side, the following tabs are shown on the right

The data types that come with the library are shown here. They can then be

side:
e Data Types
used throughout the entire project.
e Constants

The constants required by and included with the library

i B&R Automation Studio - [asprog3 [Library Manager]] [_ (O] =]
/& File Edit Miew Inset Open Project Library Object Tool: Window 2 =18 x|
DEHE X@E[E 4 ?
[| il
Hame | Type | Wersion Data Types] Eonstants] Additional Dependencies
= Libraries e
W bréyith ¢ |EC-Library Y000
+1@ funtime Binary 1.09
Fig. 11.12: Data types/constants

If a component is selected from a library (see Fig. 11.11), then the respective varia-
ble declaration and I/O assignments are shown on the right side.

If detailed information is needed concerning a function block, it can be found in the
online help. If the FBK is selected, then the respective page is shown immediately.

.7 Automation Help _ O]
] & © I @ 8 O
Hide peate Back Stop Refresh Home Frint Options
a
&gritents IooEx ISearc Favorrtes] I~
= : STANDARD - TON
Type in the keitword to find ()
| The TON function block creates a switch on delay.
TON_{ms Parameter:
Tool tables
TP
;Pa—;eums 1/0 || Parameter | Data || Description
Trace options TYPE =
Trace states -
TRUNGC N || TET BOOL || Input signal
Turning pairts of interpolation curves
Type of interpalation curves IN ||[PT TIWE Delay fitre
Typische Fehlermeldungen
by ouT|Q BOCL || Output signzl, the rising =dge of
UDINT_TO_DT the input signal is delayed by
LDINT _TO_INT - PT.
LUDINT_TE_REAL
DT TO_ShT Jour e | TME | Blapsed time ‘
LDINT_TO_TIME =
o ||| Time Diagram: o
Fig. 11.7: Online help for TON

Training ASPROG

Page 11.13

Automation B&R Automation Studio™

11. Library Manager

Additionally, B&R provides customers the possibility to view an example program
for inserting the respective component. This is done as follows.

(see Fig. 11.7)

language by pressing the Enter key

Topics Found

Click a topic, then click Display.

Search for the component in the online help using the Index tab

Now the program example can be selected in the desired programming

Location
STANDARD
STAMDARD
STAMDARD

STAMDARD - TOMO)

Cancel

LDizplay I

Fig. 11.8: Select programming language

The example shown can then be inserted into the project using copy and paste. The

help can be printed at any time.

Training ASPROG

Page 11.14

“putomation B&R Automation Studio™ 11. Library Manager

4 USER LIBRARIES

4.1 Creating a Library

LibMan makes it possible for the user to create libraries, in addition to the existing
B&R libraries.

4.1 Inserting a Library

After opening LibMan, the dialog box can be opened using menu item Insert:
Library, or by clicking on the respective symbol. After activating “New Library”,
the name of the new library can be entered in the input field. It must be a name that
was not yet used for any other purpose in the entire project. If a name has already
been used, it will not be accepted.

The programming language to be used to create the components in the new library
also has to be selected. You have to select if you want to use ANSI C or one of the
IEC languages, including B&R Automation Basic to program the components.

Inzert Library

C ~ Mew Librany

To create a new libramy pou must assigh an unique name.

Mame: Ihr_.-‘-'uitH

Type: ¢ C-Library @ |EC-Library [incl. B4R Automation B azic)

—{ Add Library

Select one or more of the available libraries in the list below or use
the browse button to find additional branes.

Library Fath tﬂ
Azl ont CAERALTOMATION Yaz i
Azbdath CABRALTOMATION as ik
AzSting CABRALTOMATION YaskiE

BrSystem C:ABRAUTOMATION \ashit

22 Nman CARRATOMATION ez ik
1 3 Browee,. |
Ok, I Cancel | Help |

Fig. 11.9: Insert Library dialog box

Training ASPROG Page 11.15

“automation B&R Automation Studio™ 11. Library Manager

i“ B&R Automation Studio - [azprog3 [Library Manager]]

.{; File Edit “iew Inzett Open Project Library Object Tool: Window 2

NEEg x & ?
v g ﬂl
Name | Type | Wersion Data Types l Eonstants] Additional Dependencies
= Libraries
I

w% - { [EC-Library V.00 e

%1// Tuntime: Binary ¥1.09

+hid standard Binary ¥1.34

Fig. 11.10: Inserted library

4.1.2 Library Properties

Properties for a library can be reached using menu item Edit: Properties. The
desired library must be selected on the left side. For source libraries, the dialog box
is used to enter and change these properties. For binary libraries, it is only used to
display the properties.

If the source code is available in the project, the parameters can be changed.
Otherwise the current settings are displayed.

Only the “General” properties are to be set for IEC libraries. For libraries written in
ANSI-C, this dialog box contains further registers which will be described later.

bi_Arith Properties Description:
General l A short description of the library
should be entered here.
BE&R Autornation Studio Librany .
@ Header File:
Name of the *.h file created for a
Marne: br_Arith .
- library. Preset to the name of the
Type: I Library library for a new library.
Dezcriphion: |Iibrary description Vel'S‘IOIl:
, Version number
Headerfile: |I:r_Arith.h
Wersion: 0100 Target Platform:

Target platform for which the
library was or should be created.

Runtime T arget:

[Abways in use

Ok, | Cancel | Help |

Fig. 11.11: Library Properties dialog box

Training ASPROG Page 11.16

“automation B&R Automation Studio™ 11. Library Manager

4.1.3 Library Parameters

The parameters can be seen when the desired library is selected on the left side of
LibMan.

ﬁﬁ' B&R Automation Studio - [asprog3 [Library Manager]]

@Eile Edit iew |nset Open Project Lbray Object Took Window 7
[Demals = els =X @6 S s e o2
a5 e b

Name | Type | Wersion Data Types | Caonstants | Additional D ependencies
EI 4 Libraries _ — Name
i &% br Aiith ¢ |EC-Libram 40,00
funkime Binary W1.09
A standard Binary W1.34

Fig. 11.12: Library parameters

e Data Type
Here, user data types belonging to the library can be added by clicking on the
symbol or using the <Insert> key. However, they must be created first using
the menu item Open: Data Types so that they can be selected. If a variable
is declared as a structure in a library component, this user data type is
automatically added.

e Constants
The constants needed for the library are shown here. Additional constants
can be added by clicking on the symbol or using the <Insert> key.

e Additional Dependencies
When adding a library that other libraries have declared as dependent this
will automatically be inserted in the project. When using B&R standard
functions, the libraries are automatically added as a dependency. However,
only the system module e.g.: standard.br for the library will be copied to the
software tree of the project desktop here.

Training ASPROG Page 11.17

Automation B&R Automation Studio™

4.2 Creating an IEC Function Block

Before a component can be created, a library must be inserted.

11. Library Manager

Then select the library that has been created on the left side of LibMan where the
component should be added. A new component can be added to the library using the

right mouse button or the symbol.

ﬁ“u‘ B&R Automation Studio - [asprog3 [Library Manager]] HE=E
@ File Edit “iew Inzett Open Project Librae Object Toolz ‘wWindow 7 - |E’|5|
[Demay 2o = XE o sSE S w28 |
2 | 7 B s % bl
Mame | Type | wersion Data Types | Constants | Additional Dependsnciss
|Name
_
Raste
Delete
[Vizable
Rename
Generate * a. " h file
x| ;
= Properties...
=
Output I Dehugl Find in Files
For Help, press F1 [|COM1 |OFFLINE i
Fig. 11.13: Inserting a function / function block
Ingert Function £ Function Block |
1. Azszign an unigue name for the new unction or
function block.
M ame: PRGSurnme
2 Agzign the type of the new element.
Type: = Function Block
= Function
3 Select the language for the new function ar
function block.
Language: IB&H Automation Basic j
(1] I Cancel | Help |
Fig. 11.14: Inserting Sum FBK
Training ASPROG Page 11.18

Automation B&R Automation Studio™

The new component is now shown in LibMan.

11. Library Manager

i“ B&R Automation Studio - [azprog3 [Library Manager]]

/ﬂ File Edit “iew Inzert Open Project Library Object Tools Window 2 =1
0= X Tk ?

2

Hame Type | Yergsion Declaration
3 Libraries] Marme Type Scope
- .l.! brTrF'ro IEC-Library W0.00

Function Block

+1 :_ "runtlrne Binary W1.09

Fig. 11.14: Component that was inserted

4.2.1 Selecting the Language

With IEC libraries, the user can select between languages
STL, ST and AB.

4.3 Function Block Properties

A short “public” description can be added for each component using the menu item

Edit: Properties

PRG5umme Properties
General l
ﬁ: BER Automation Studio Function / Function
I arme: FRGSumme
Type: Function Block
Librar: br_Arith
Source: FRGSurmme. SRC
(=0 (a5 ol ation of the: sum from bwo integer values

Ok, | Cancel | Help |

Fig. 11.15:

Component properties

Training ASPROG

Page 11.19

“automation B&R Automation Studio™ 11. Library Manager

4.4 FBK Interface

The interface for a component is principally the same as the variable declaration in
cyclic program sections. The required variables can be entered here. Unlike a “nor-
mal variable declaration®, there are additional possibilities to declare a variable
here.

e VAR _INPUT
Input paramters

e VAR _OUTPUT
Output parameters

e VAR
Static variables / FBK local

e VAR _DYNAMIC
Dynamic variable in Automation Basic. This variable is only valid in the
FBL and has no affect on outside activities.

e VAR _INPUT_DYNAMIC
Dynamic input/output parameters:
They are assigned the respective pointer by the ADR function. That means
that an address must be connected to this input. Access using the pointer
takes place automatically in the FBK.

Note
If variables are used in the component source code which are not yet entered in the
declaration, the “Auto Declaration Dialog Box” is shown.

Training ASPROG Page 11.20

Automation B&R Automation Studio™

4.5 Source Code for the Function Block

11. Library Manager

To enter the source code, simply select the desired component on the left side of

LibMan and press the <Enter> key.

& BLR Automation Studio - [asprog3 [Library Manager]] | _ (O] x|
r(f File Edit “iew Inset Open Pioject Library Object Tools Window 7 & =]
[Demagll=ns [XECreEamove]
i am |) 8% 2% 6]
Mame | Type IVersion Declaration |
- ibf[? " IEC-Lib 00 Hame [Tose Scope
HI brTiProg _|EC-Library . i
[TH PAGSUmme * Feite Bl S vale] 3 SINT WVAR_INPUT
urtime Birary W1.09 & value? SINT VAR_INFUT
@+ sum INT WAR_OUTRUT
< | »
|
=
=
DOutput [Debug | Findin Files |
For Help, press F1 [|COM1 |OFFLINE G

Fig. 11.16: Selected FBK

The editor will be opened according to the language selected for the component.

The code for the FBK can now be entered.

6§ B4R Automation Studio - [PRGSumme.SRC [B&R Automation Basic]] |_ (O]]
File Edit “iew Inset Open Project Object Tools “Window 2 =18 x|
[DeEa el (XS ms 9]

oo 0 O B &R E|

0001 (* Implementation of PRGSumme *) -
0002 -
0003 |sum = valuel + wvalue?2

0004

0005

0006

0007

0008

0009

0010

0011 =

K o

Il

Il

=

Output | Debugl Find in Filasl

For Help, press F1 |Lr 2, Cald |EOMT [OFFLINE s
Fig. 11.17: Source code for the Sum FBK

After closing the editor, the component is saved and is complete.

Now the component can be used in the project just like the standard components.

Training ASPROG

Page 11.21

“automation B&R Automation Studio™ 11. Library Manager

4.5.1 Heating Example I

The temperature of a room should be monitored.

If the actual temperature “temp_act” is higher than the set temperature “temp_set”,
then the variable “cooling” should be set to one.

If the actual temperature “temp_act” is lower than the set temperature “temp_set”,
then the variable “heating” should be set to one.

Heating control should be integrated in a FBK which is then called in a LAD task.

e Creating the heating control FBK in B&R AB

Declaration
RENE Tyvpe S CcopeE
+3 temp_act IMT VAR _CIMPUT
+3 temp_set IMT VAR _CIMPUT
¥+ heating BOOL VaR_OUTPUT
....... %+ coolingBOOL L MARDUTPUT

Fig. 11.18: FBK Interface

e Using the FBK in a LAD task

FBK Name: PRGHeating
Task Name: test_fbk

Resource: ?

Project: libman.pgp

Training ASPROG Page 11.22

Schulung / Training

“automation B&R Automation Studio™ 11. Library Manager

4.5.2 Fill Level Monitoring

Procedure:

A container should be filled with a liquid. The fill level constantly changes when
adding the liquid, therefore make sure that the valve is only closed when the fill
level is over the switch off level for at least 10 seconds.

Diagram:
Valve
>
Full Fill sensor = 1
R Empty Fill sensor =0

e Handle monitoring in a FBK

e Test the FBK in B&R AB

FBK Name: PRGSwimmer
Task Name: ?

Project: libman.pgp

Training ASPROG Page 11.23

Schulung / Training

“putomation B&R Automation Studio™ 11. Library Manager

4.6 Creating Online Help

It is relatively easy to create online help for user libraries.

An HTML editor and the program “Html Help Workshop” which can be download
free of charge from Microsoft via the Internet

http://msdn.microsoft.com/library/tools/htmlhelp/chm/hhlstart.htm

It is even easier to create help with tools like “Robohelp” or “FAR”, but they are
not free of charge.

4.7 Creating a C Library

The procedure is almost the same as with IEC libraries. The main difference is that
the source code for the component is not added directly by double clicking on the
function, instead must be added as source files.

Detailed information can be found in the online help. There is a tutorial that
explains the exact procedure.

E? BLR Automation Software Help M=l E3
o] e S) | &

Aushlenden Suchen Zuriick Yonwats Abbrechen Aktualisiersn Startseite Drrucken Optionen

Izl |Igde>< | Suchen I Eawariten |

Anlegen einer neuen C-

= [Automationstudio ;l

@ Erste Schritte Library
@ Programmiersprachen B
= [Libraries Offnen Sie den Library Manager mit dern
[£] Allgemein Ileniipunkt Offnen | Library Manager.
@ Begriffsdefinition
@ B4R Standard Libraries Wihler Sie itn Iend Einfiigen | Library, um
= 1] Librarymanager eine Library enzufizen.
@ Allgemeine Eigenschaften
] Bedienungen des Librarymanagers Esz eracheint der Insert Library Dislog
@ Einfiigen von Standardlibraries
= lﬁ Erstellen einer neuen Library

@ Eigenschaften von Libraries

@ Erstellen von Bausteinen
] Libraries Fiir versch, Zielplattfarmen
@ Installation won Arwenderlibraries

i Mew Libramy

Tocreate a new |

@ Erstellen giner Hilfe zu giner Library Marme: I_
= ([Tutorials !
stellen einer C-Library | Tvper & C-Libr
@ Erstellan siner TEC-Library
@ Portierung won in PE2000 erstellten Libraries = &add Libramy
@ Mation =] r hd

»

Fig. 11.18: Tutorial for creating a C library

Training ASPROG Page 11.24

“automation B&R Automation Studio™ 11. Library Manager

4.8 Reusing Libraries

To reuse a library, the following steps must be carried out.

e Copy the library from the current project
C:\Projekte\ASProg.pgp\Library\ “Name of the library*

This library directory, which exists in all projects, contains all libraries
included in the project.

B3 Exploring - m68k

File Edit “iew Toolz Help

[mk B gl femel o XE =BEE
|AII Falders | Contents of mESk'
=1 Asprog.pop =] | brTiPrag
{:l Dbk beTiProg.br
ED Library biTPrag.h
EID brTiProg
© @1 Help

D Operator
- runtime
-1 pam
Fon—% -

Fig. 11.19: Library directory structure

The library directory is divided into five subdirectories:
Help: Online help, if available
i386: Library files for Intel platform (*.br, *.h, *.a File)
mo68k: Library files for Motorola platform (*.br, *.h, *.a File)

Source: Source files for the component are stored here. If
these source files are deleted, the component can no longer be
edited.

Temp: Temporary directory

Training ASPROG Page 11.25

“automation B&R Automation Studio™ 11. Library Manager

e Inserting the library in a standard directory
In order to be able to manage libraries correctly, it makes sense to create a
separate directory in the AS path.

e.g.: C:\BrAutomation\AS\Library\User\ “Name of the library”

e Add library directory to LibMan
In the new project, the path for the user libraries has to be entered. Now the
library can be inserted like standard libraries.

Settings

C Compiler l Ladder Print Settings l |EC Editor Settings]
Maming conventions Librar Manager l Fation l Build & Tranzfer]

g Library Manager

Standard directary:
C:\BrautomationtazlibramsW0z21 04

Library directories:

J| | H
Default target memory for libraries:
User ROM =l
Ok ‘ Cancel |

Fig. 11.20: Path settings in LibMan

Training ASPROG Page 11.26

“automation B&R Automation Studio™ 11. Library Manager

S PG2000 LIBRARIES

There are some differences between Automation Studio and PG2000, therefore
instructions are available to simplify conversion from PG2000 to Automation Stu-
dio. Automation Studio provides a function which allows these libraries to be
imported.

5.1 PG2000 Porting Guide

This tool can be found in the online help for LibMan. The Porting Guide provides
detailed instructions for converting PG2000 libraries.

E? Automation Help M[=] E3
] & © [w &8 o
Hide Locate Back Stop Refresh Home Print Dptions
- - FY
Cortents]Igdex] Search] Favorites] POrtlng Guide <l
=1 | Erstellen einer neuen Library d .
[5] Eigenschaften van Libraries PG2000 allows you to export projects or tasks
+ @ Erstellen von Bausteinen as XPE files. This is the most important
[Z] Libraries Fiir versch. ZielplattFormen _functlun that_ allows you to convert pru]ec_ts
5] Installation von Anwenderlibraries into Automation Studio. 45 therefore provides
|E] Erstellen einer Hilfe 2u einer Library an #PE ImpDrt fun_c:tlon. The_ﬁrSt step for
—— — transfer is exporting the project from PG2000.

=] Portierung von in PG2000 erstelten Librarie —> Mow the XPE import can be started in

= @ Motion Automation Studio. Before doing this you
= @ TPU should generate a new project, Then start the
= [[]] Parting Guide import from the =File Import menu point, You
2] General Information now see a file select box where wou can
2] #PE Import select the file to import (there is also a
=] Settings For ¥PE Impart Dislog mL_JItip!e _selecti_un option, but you should avoid —
5] Differences between Aukomation Studio and PE using it in wersion 1.321), Wersion 1.4 has the
[£] #PE Import of Function blacks capability to select several files:

|E] Prablems using FBKs
\E] Typical error messages

|E] Problems
\Z] Errors in wersion 1.4 i
@ g — Fom':-wmg
= T sections are
calantahlia- ﬂ

Fig. 11.21: PG2000 Porting Guide

Training ASPROG Page 11.27

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

T OVERVIEW ..ottt 2
2 ANST C oottt 3
2.1 Development HiStOTycccoevveeriieiiieeiiiieeieeeiee e 3
2.2 Definition of Termscccocceeviirieiniiniiiiciececeeeeeeeen 4
2.3 Command GIrOUPSccoveeeriierriieeniieenreeeniee e esieeesree e 6
3 STRUCTURE OF C PROGRAMSc.cooiiiiiiiiiieeeeeeieeeee 9
3.1 B&R EXPansionscccceevveeriieeniiiieniieesiieeeieeesiee e 10
3.2 Creating a C Taskcocceeeviiiiiiiiiiieiiieeeeeee e 14
3.3 Variable Declarationcceceeeveenieeieenienneeniceeeeeee 17
3.4 Data TYPES wvveeenrieeeiieeeiie ettt ettt 20
3.5 LiN€ COVETAZE ..eeevuvrieeiiieiiieeeiieeeieeesieeesieeesteeesineeesiaee e 22
3.6 FUNCHIONS ..ottt 24
3.7 DEDUZEZET ...ttt 30
3.8 Using Arguments with Complex Data Typescccc.c..... 33
4 USING B&R LIBRARIESccooiiiiiiiiiieieeeeeeeeeeeeiene 36
4.1 General Informationcc.ccoeoeeviieiiiniinneiniceeeeeee 36
4.2 EXAMPIE ...eiiiiiiiiiiiiiee ettt 37
S COMPILER INFOcooiiiiiiiiiniiieeienieeeeteseee e 41
ST FILE TYPES ettt 41
5.2 Compile Procedurecccceevieeniieiniieiniieeniieesiee e 42
5.3 GNU C COmMPIIETeoviiiiiiiiiiiiieeiieeeiieeeite e 44

Training ASPROG Page 12.1

Schulung / Training

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

1 OVERVIEW

LAD

ST

SFC

AB

ANSI C

B&R offers the right programming language for every application and for every
programmers preference. This includes:

e [adder Diagram (LAD)

e Instruction List (IL)

e Structured Text (ST)

e Sequential Function Chart (SFC)
e B&R Automation Basic (AB)

e ANSIC

Contact, logic and function operations are combined here in a single user interface.
Ladder diagram is the simplest form of programming digital and analog processes
because of its similarity to a circuit diagram.

Instruction list is similar to a machine language. It can be used like LAD for logic
operations.

This high level language is a clear and powerful programming language for
automation systems. Simple standard constructs guarantee fast and efficient
programming.

A sequential language that was developed to separate a task into clear units. SFC is
well suited for processes where states change in steps, for example: automatic
carwash.

This B&R high level language is a clear and powerful programming language for
automation systems of the newest generation. Simple standard constructs guarantee
fast and efficient programming. Previously PL2000

This high level language is a powerful programming language for automation
systems of the newest generation. Simple standard constructs guarantee fast
and efficient application programming.

Training ASPROG Page 12.2

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

2 ANSIC

2.1 Development History

C is a programming language which was developed in the 70s together with UNIX
at AT&T Bell Laboratories by Dennis M. Ritchie. It uses and expands on the
language “B” which was developed by Ken Thompson. This is how “C” came to be.
Since then, this programming language has continued its course of success in all
areas of programming.

In 1978, Brian Kerninghan and Dennis Ritchie wrote the “K&R White Book”
“The C Programming Language”. Kerninghan wrote the main text and Ritchie wrote
the technical sections.

Because it is used in many different areas, it became necessary to standardize the
language. Tis was done by the American National Standards Institute ANSI in
1983. Then is became possible to implement the language on different platforms.

2.1.1 Why use a high level language?

Using language constructs eases programming of control tasks and makes a
program created with this language much easier to read. Programs can be achieve
much higher performance than with normal PLC programming languages.

Training ASPROG Page 12.3

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

2.2 Definition of Terms

High Level Language
Common term for programming languages which allow problem oriented
formulation and function independent of the computer type where they are running.
e.g.: C, PASCAL, ST, AB

C Structured Programming Language.
ANSI Abbreviation for: American National Standards Institute.
ANSIC Standardized “C”

Source Code
Consists of programming commands created by the programmer with a text editor
and saved in a file. This file contains the source code. This code is compiled and
can then be transfered and executed on controllers, PCs etc.

Source Short form of source code.

File / Program / Document
The basic memory unit on a PC. Documents and programs are files. Different data
types are possibly assigned different symbols.

Folder
A folder can contain files and other folders. To make things clearer, place your
work in folders just like you would in your office or at home. Your directories are
shown as folders.

Directory / Path

In text oriented operating systems, directory names or paths are used to store files
instead of graphic symbols (folders).

Directory Tree
In order to display directories in a clear manner, programs (e.g.: Windows Explorer)
show directories as tree structures.

Training ASPROG Page 12.4

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

Editor The C editor is a text editor for C source code. The programmer is shown possible
entry errors when programming using syntax coloring. This signiicantly reduces
programming times because syntactic programming errors are ruled out.

CommandsEach command in C must be terminated with a semicolon.
e.g:res=a+b;

Comment
Meaningful comments placed in the program make orientation easier for longer
source codes. Additionally, the code is clear and easy to follow, even after a long
period of time.

Comments are terminated using “/*” and “*/”.
Comments can be written over several lines.

e.g.:/* This is a comment.
And this is the second line. */

Training ASPROG Page 12.5

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

2.3 Command Groups

An overview of the operator types:

e Primary operators
e.g.: Brackets: a = (b+c) * d;

e Unary operators
e.g.: Negation: a = !b;

e Arithmetic operators

e Shift operators

e Compare operators

e Bit oriented operators

e [Logic operators

e Ternary operators
Operator for conditional expressions

e Assignment operators

e Comma operator

Training ASPROG Page 12.6

Integrale
Automation B&R Automation Studio™ 12. ANSI C

Note
In this section, we will only explain the operators that are meaningful for
getting started in C with B&R controllers.

Primary operators

Instruction |Description |Example

() Brackets value=a *b - c; or

value =a * (b - ¢);

Unary operators

Instruction |Description Example

! Unary Negation [a = !b;

Arithmetic operators

Instruction |Description Example
= Assignment a=b;

+ Addition a=b+c;
- Subtraction a=b-c;

* Multiplication a=b*c;
/ Division a=b/c;

% Modulo (remainder of a=b % c;

division)

Training ASPROG Page 12.7

Automation

Compare operators

Bit oriented operators

Logic operators

B&R Automation Studio™

Instruction |Description Example
< less than if (a<b)
> greater than if (a>Db)
<= less than or equal |if (a <=Db)
to
>= greater than or if (a>=b)
equal to
== equal to if (a==Db)
I= not equal to if (al=b)
Instruction |Description Example
& And - bit mode a=b &c;
| Or - bit mode a=blc;
A Or - exclusive a=b"c;
Instruction |Description | Example
&& And if (a>0) && (b>0)
Il Or if (a>0) 1l (b>0)

Training ASPROG

12. ANSIC

Page 12.8

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3 STRUCTURE OF C PROGRAMS

Like any other task, a C task can consist of several functions.

Code blocks are represented in C using curved
brackets.

c _task

c file.c

Start code block

initialize () {

cyclic part ()

exitroutine () } End code block

c file 2.c

Now we will show the individual possibilities using an example:

The following C code increases a counter variable each time the function with the
name “CyclicFunction(..)” is called, or is set to a start value by calling the function
“Initialization(..)” and is set then to an end value when starting the function
“Terminate(..)”.

INT variable; /* Declaration of the variables */
void Initialization(void)

{
variable = 1; /* Assign start value */

}
void CyclicFunction (void)

{
variable = variable + 1; /* Value increased by 1 */

}
void Terminate (void)

{

variable = 0; /* Reset value */

Training ASPROG Page 12.9

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.1 B&R Expansions

3.1.1 Include Files

In order to use certain possibilities on the PCC, we will first include the header file:
“ple.h* which contains definitions for all necessary macros using the following
instruction:

#include <bur\plc.h>

EIJ Birésutomation |
=0 AS
-] GruDoe

_| include
#-] I
=] méak-ek
-] tin
=7 inchude
: -] machine
; m;J e
w1 b -

Fig. 12.1: Directory structure

Like all other B&R system header files, the header file “plc.h* is found in the AS
install directory:

BrAutomation\AS\GnuInst\m68k-elf\include\bur\plc.h

and can be added to the C task by marking the C task name and pressing the
[ENTER] key, or using the main menu item Insert: File. This is not absolutely

necessary, but has the advantage of continually monitoring the header file for
changes.

Training ASPROG Page 12.10

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.1.2 Analyzing the Entries in the Header File “plc.h”

e Definition of the Variables:

Macro name/ Function

Attribute

_GLOBAL Code for a PCC global variable.
_LOCAL Code for a task local variable.

e Definition of the Functions:

Macro name/ |Function

Attribute

_INIT Code for an INIT routine.
Only executed when booting the PCC with a cold start,
warm start, or when transferring a task.

_CYCLIC Code for the function which is called cyclically.
The function name cannot be “main”

_EXIT Code for the EXIT routine.

Called once when deinstalling the task.
Also executed when the task is transferred again.

_NONCYCLIC |Code for a function which is executed in the system
idle time. (only for special applications)

Training ASPROG Page 12.11

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

Using this macro in our C program results in the following code:

#include “plc.h" /** B&R-Standard files x*/

_GLOBAL INT variable; /** PCC-global wvariables x*/

/** This function is only used when booting the PCC,
or when downloading the task x*/

_INIT void Initialization(void)

{

variable = 1; /** Assign start value x*/

/** This function is executed cyclically x*/
_CYCLIC void CyclicFunction (void)
{

variable = variable + 1; /** Value increased by 1 xx/
}
/** This function is only called when deinstalling
the task * %/

_EXIT void Terminate (void)
{

variable = 0; /** Reset value x*/

Training ASPROG Page 12.12

Integrale
‘Automation B&

Example

Create a new project and test the previous example using line coverage.

Project Name: c_proj

Task Name: c_taskl
Resource: C#3

Schulung / Training

B&R Automation Studio™

Automation

3.2 Creating a C Task

C tasks are inserted in the project just like LAD tasks.

12. ANSIC

& B4R Automation 5tudio = O] x|
File Edit “iew Inset Open Project Object Toolz Window 2
D @b B (X ESE D 9|2
Rio 2005 GDM [Pid New Object E
Model no. ~ e
Sl RID_2005 Diefine the name and type of the new application Size: [bytes)
EHM 2005 abject
=, 3Ps4es,
Mame: Ic_task'l 1]
i}
Tupe: C Language £
ann
 Resource 3004
_.':A“" iES?'EjDE Select a resource for the new 53664
I~ du application object
Lo K150,
~3 Resource: [Cocic #1 - [10 ma] -
FFER 2005 Remo =l
= < Back I Firizh I Cancel |
:II
=l output [Debug | Findin Files |
Software module check Ok, |COM1 |CP260 ¥210 |RUM 4

Fig. 12.2:

C Task dialog box

This type of task can consist of several files, therefore these source files are added

under the task symbol using “Insert File”.

i B&R Automation Studio - [asprog3.GDM [Project]] M=l E

_I‘ File Edit “iew Ingett Open Project Object Took ‘wWindow 72 - |ﬁ'|l|
D@ 2o XE T LS E|S D o)
Maodel no. | Sl a | | Software ILDQ bookl Degc[iptionl
E‘r':“ ASPROG3 todule Mame | Werzion | Transfer to | Size [bytes]
=i 2005 BF
& [=I(g] CPU
ok 5794 P & Cyclic #1-[10ms
2. i S0} o ek U'ser RAM
R ! E a System
t-tb IFE21.9 5 |: sysconf Open UserROM 800
. 14 geloader = UserROM 3896
7L 3DI47EE 3 Declaration
o 3004796 4
L7, 383606 5 — ‘T’—"a‘Ch
A, 3803506 E fage
L= aMwAsLER 7 kg
L% 3EX150.60-1 il;l St
2 I I C gtog
x| Eraze Eron llanaet
=] W plaad Fran Tanget
- Tranzfer ta 3
Dizable
Benarne
Output | Debugl Find in Filesl Froperties...
For Help. press F1 [Line 3017 COM1 [OFFUINE Ry

Fig. 12.3: C task,

Insert File dialog box

Training ASPROG

Page 12.14

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

In order to manage the project in a clearer manner, all source files are grouped

together in a “Source” directory. A new folder can be created by simply clicking on
the marked symbol.

l"t‘ﬁ‘ B&R Automation 5tudio O] x|
File Edit “iew Inset Open Project Object Toolz Window 2
[DEE@| 0o - [XEF [T L SE D 2P|
Rio_2005.GDM [Project] i =]
Model no. | Slat | Software I Log bookl Descriptionl
Slm RIO_2005 ; Eize [htes)
BRI 2005 : 3
Ll aPsaesg Lockir |3 Cpu - & cH B E
“ | Fsource

oL 3014756

o 3004736 o0

7], 3613756 Eam

A, 340350.6 bIEEd

2 3EX150.604

— &)

FVER 2005 Femote |0 File pame: | Add
Files of twpe: |Eommon Files [*.c:* ka0 &) j Cancel |

=
=
1_'1| Output | Debugl Find in Filesl
Software module check Ok, |COM1 |CP260 ¥210 |RUM 4

Fig. 12.4: Create new folder

Then the file name is entered.

Note
The extension “.c” also has to be entered !

Add C files %]
Lok [=3 Source = & cif
File: harne: Add
Files of per | Commnon Files 7o hee 2.0 a) j Cancel |

Fig. 12.5: Enter file name

Training ASPROG Page 12.15

Integrale o .
Automation B&R Automation Studio™

12. ANSIC

Double-clicking on the file opens the editor.

ﬁ‘ BER Automation Studio - [asprog3. GDM [Project]] | _ (O] x|
_ 18] x|

_I‘ File Edit “iew Inzett Open Pmject Object Took: ‘wWindow 2
DeEd |y e XS0 LS|4 o o8|
Model no. | Slea || Sofwars ILDg bookl Degc[iptignl
E':I"' ASPROGE d odule Mame | Werzion | Tranzfer to | Size [bytes] I
=Hi 2005 BF
. [=I(g] CPU
ok 3P57I43 F £ Cyclic #1-[10ms]
_j P = o_taskl W 000 Izer Rdkd h24
[=Hi 14 EI
t-t,b AFE219 5 @ Svsten
& g 1 |: sygconf W 222 Uzer ROM 200
-k 3014756 3 geloader ¥130 UserROM 3896
- b 300473.6 4
-, 3813808 5
—'FgL 3803506 3
2 3Mw1E0E0A 7
7 3EX150.601 g
4| | »
x|
=
=l
Output | Debugl Find in Filesl
For Help. press F1 [Line 4 af 7 |COM1 |OFFLINE s

Fig. 12.6: Opening the C editor

Training ASPROG Page 12.16

B&R Automation Studio™

Automation

3.3 Variable Declaration

12. ANSIC

In addition to the macros for “_ GLOBAL” or “_LOCAL” shown above, the variable
declaration in the C file also provides the possibility to use C global or C local

variables.

The difference between PCC PVs and C variables is the target memory.
PCC PVs which are entered in the AS database,

Main menu itemOpen: Declaration, are stored in Dual Ported Ram.

C variables are defined in User RAM (freely available).

DPR PVs: _GLOBAL /_LOCAL

C Variables: C global / C local

The variable values are remanent

C variable are initialized with O when
switching on the controller.

The max. size of an analog PV is limited
to approx. 30kByte.

The size of a C variable only depends on the
memory available.

_GLOBAL PVs can be assigned to the
hardware.

C variables cannot be assigned to the
hardware.

_GLOBAL, LOCAL PVs can be
displayed (e.g.: using PVI, NET2000,
etc.).

C variables cannot be referenced via PVI,
NET2000, etc. That means: They are not visible
in the WATCH window.

Initialization of PVs in the variable
declaration or in the INIT routine.

Initialization possible directly during definition
in the C file (e.g. : int variable = 123;).

No multidimensional arrays (matrix).

Multidimensional arrays are allowed

Structures have a max. of 16 layers.

No limits for structures.

Enumerations data types are not
available.

Enumeration data types are supported.

When using pointers, only the address is
entered as UDINT in variables /
structures.

. 1
In C, pointers can be used as normal.

1 With the exception of PCC variables declared with _LOCAL (first reference is a dynamic variable).

Training ASPROG

Page 12.17

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.3.1 Scope of the Variables

Task I:

C-Filel:

_GLOBAL int pcc_global;
int c_global;

void functionl (void)

{

int ¢ local;

C-File2:

_LOCAL int pcc_local
extern int c global

Task ITI:

C-File3:

_GLOBAL int pcc_global;

e A PV defined with _LLOCAL is local in the task and global for the task files.

e A PV defined with _GLOBAL is PCC global and also global for the task
files.

e A variable declared as C global is global for all C files and its
scope is limited within a task.

e A local C variable is only valid in the function where it was defined.

In order to use a global C variable in a tasks in several files, it must be declared in a
file without the attribute “external”. In this way, the memory for this variable is
reserved. In all other files where this variable is accessed, it have the attribute
”external”. The attribute external indicates to the compiler that the variable is
already declared in another file.

Training ASPROG Page 12.18

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

IMPORTANT

e For each PCC task, one function must have the attribute ’CYCLIC”. But
only one function can have this attribute.

e For each PCC task, a function can have the attributes “_INIT”, “ EXIT” if
required.

e DPR PVs have the attribute “_GLOBAL” or “_LOCAL”. In this way, these
variables are managed by AS in the project variable declaration
Open: Declaration.

e If one or more DPR PVs are no longer used in the programs, they remain in
the project and reserve memory in the DPR until a “Build All” Project:
BuildAll

e DPR PVs are referenced using a max. of 32 characters. C variables can be
longer.

e For the variable types, make sure that C does not have any rules regarding bit
length for an integer variable (int). Therefore this length depends on the
processor and is 32 bit for the B&R PCC.

In order to work with IEC1131 data types in C, the user is provided the B&R header
file named: “plctypes.h”.
Directory for plctypes.h:

BrAutomation\AS\Gnuinst\m68k-elf\include\bur\plctypes.h

Training ASPROG Page 12.19

Schulung / Training

Automation

3.4 Data Types

B&R Automation Studio™

12. ANSIC

Various data types are defined in IEC61131-3. Some of these data types do not have
a corresponding type in the ANSI C standard. Therefore B&R Automation Studio
has declared some data types in the file “plctypes.h” so that all
IEC1131 data types can be used in C.

Resolution IEC1131-3 B&R C ANSI C

1 bit BOOL plebit’ unsigned char

8 bit with sign SINT signed char signed char

8 bit without sign USINT unsigned char |unsigned char

16 bit with sign INT short short

16 bit without sign UINT unsigned short |unsigned short

32 bit with sign DINT long long

32 bit without sign UDINT unsigned long |unsigned long

32 bit time difference in milliseconds |TIME plctime' signed long

32 bit date in seconds since 19707 DT pledt’ unsigned long
DATE_AND_TIME

Zero terminated string with length x* |STRING(x) plestring' [x+1] |char [x+1]

Floating point representation 32 bit |[REAL float float

IMPORTANT

In order for the compiler to view plcbit variables as unsigned char, the
user must make sure that only O or 1 is assigned.

'Defined by B&R in plc.h
2 Unix standard format for date entries

3In IEC1131-3, the final O byte is not counted, it is in ANSI C

Training ASPROG

Page 12.20

Automation

Example

B&R Automation Studio™

Create a solution to the following task in C.

12. ANSIC

Check “TempAct”. If “TempAct” is smaller than “TempSet”, then bit variable
,heating® should be set to 1. Otherwise “heating” should be cleared.

Name Type |Scope Attribute | Value Description
TempAct |INT global IP5.0.5.1 |----—mmmm- Analog IN, Chan. 1
TempSet |INT global 1P5.0.5.2 |----—-omoee- Analog IN, Chan. 2
heating BOOL | global QP5.0.4.11 | * remnant |Dig. OUT, Chan. 11

Project Name: c_proj

Task Name: c_task2

Resource: C#3

Training ASPROG

Page 12.21

Schulung / Training

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.5 Line Coverage

&l View: Monitor or <Ctrl><M>

AS is first switched to Monitor Mode.

El Object: Start Line Coverage

Start -> by clicking on the “green” lamp symbol

With Line Coverage, the values are taken from the controller and shown in the
respective program context.

The arrows on the left indicate that a line is being processed. Figure 11.7 the line
,heating = 0“ is not currently being processed.

If the mouse cursor is placed over a variable, then a
,»Tool Tip* is opened which shows the current value of the variable on the

controller.
ﬁ“n“ BER Automation Studio - [c_taskl.c [C Language]] [_ (O] x|
@ File Edit “iew Open Project Debug Object Tools ‘window 2 =& x|

DeEd s op=clx@oscid 292 enl! e ==
AN BER T e s

main program sighned with cyclic d

3
B if | ¢ p set |
i termp_act = 00000 |
he INT

else
i

==

heating = 0O;
i
H I

o

* Transfering o_taskl (User RAM, Vers: 0.00, 01.0%.2000, 524 Byte, Fath: C:\projecﬂ;l

* Transfering c_taskl ok
-
J 4| | 3

Output | Debug | Find in Files |
For Help. press 1 Ln1.Col1 oM XPtszvain RUN | |

Lilx|[+ & =

—

Fig. 12.7: Line Coverage

Training ASPROG Page 12.22

_

Example

Test “c_task2” using Line Coverage.

Schulung / Training

Integrale
Automation B&R Automation Studio™ 12. ANSI C

3.6 Functions

3.6.1 General Information

Sub-programs which are referred to as functions are a major part of C. They are
used to structure the program in a clearer manner. These sub-programs are very
similar to function blocks, but can only be used by C tasks.

3.6.2 Structure of a Function

Return value Function name | Arguments

e.g.:
void CyclicFunction (void)

{

e Returned value
Provides the function the possibility to return a value to the function where it
was called. In our example, we don’t have a return value, therefore void
(void = empty).

e Functions name
Name used to call the function in the program.

e Arguments

Values given to the function. In our example, no values are provided,
therefore: void

Training ASPROG Page 12.24

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.6.3 Providing an Arguments as a Value

Program sections which are often reused should be placed in sub-programs

(=functions). The arguments provided are processed in these functions. If
necessary, the result can be given back to the function that made the call as a return
value.

For example, the operating system provides the Init function the current boot
information.

#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files */
_LOCAL DINT Boot information;

/* This function is only used when booting the PCC,

or when downloading the task */

_INIT void Initialization (DINT PCC_info)
{

Boot information = PCC_info;

Argument: (DINT PCC_info)

The argument is saved in a local C variable in the function and can only be used by
this function.

To provide several arguments for a function, they must be separated by commas.

Training ASPROG Page 12.25

Integrale
Automation B&R Automation Studio™ 12. ANSI C

3.6.4 File Local Function

We want to add two numbers with a function and save the result in a
,.. LOCAL* variable.

#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files *x/

_LOCAL DINT Boot information;
_LOCAL DINT Result;

_LOCAL INT Valuel,
Value2;
/* Declaration of the function prototypes */

DINT Add(INT Valuel, INT Valuel);

/* This function is only used when booting the PCC,
or when downloading the task */

_INIT void Initialization (DINT PCC_info)
{

Boot information = PCC_info;

_CYCLIC void Cyclic(void)

{
/* Call the function */
Result = Add(Valuel, Value2);

/* */

DINT Add(INT Valuel, INT Value2)
{

DINT Res; /* Definition of a local C variable */

Res = Valuel + Value2; /* Calculating the sum */

return(Res); /* Return the result to the
functionthat made the call */

Training ASPROG Page 12.26

Integrale
Automation

Example

Create a local function, which multiplies 3 values. Test the
function in a task.

Task Name: calc
Resource: C#1

Schulung / Training

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.6.5 Task Global Function

All functions in a task can access this sub-program (File 2).

Task 1:
C-Filel:
#include <bur\plc.h> /* B&R Standard files */
#include <bur\plctypes.h> /* B&R Standard files */
~ LOCAL DINT Result;
_LOCAL INT Valuel,

Value?2;

/* Declaration of the function prototypes */
external DINT Add(INT Valuel, INT Value2):;

~CYCLIC void CYCLIC (void)

{
/* Call the function */
Result = Add(Valuel, Value2);

C-File2:
#include "plc.h" /* B&R Standard files */
#include "plctypes.h" /* B&R Standard files */

DINT Add (INT Valuel, INT Value2)
{

DINT Res; /* Definition of a C local variable */
Res = Valuel + Value2; /* Calculation */
return(Res); /* Return value */

}

In C Filel, sub-program Add()) is called in function Cyclic().
The function code is contained in C File2. Therefore the compiler in C Filel
must be informed that the code for Add() is external.

Training ASPROG Page 12.28

Integrale
Automation

Example
Change task “calc” so that the addition is coded in a separate
file.
Task Name: calc
Resource: C#1

Schulung / Training

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.7 Debugger

37.1 B Set / Clear Stop Point

With this function, break points are set on the controller which stop the system.

The Debug output window on the lower edge of the AS window shows Debugger
information. The toolbar for the Debugger is opened.

@ | 1 [mfF of ==| 5

The program can be tested in single step mode with the “single step” El or

“procedure step* {¥*| function.

“Next” 1 | causes processing to continue to the next stop point or cycle.
P g PP y

3728 Single Step

All instruction lines are executed. If functions are called, they are executed if the
source code is available.

3.7.3 EI Procedure Step

Functions are completely executed. Then the program counter Stopps after the
function call.

I‘ﬁ“ B%R Automation Studio - [c_taskl.c [C Language]] [O] =]
@ File Edit ‘“iew DOpen Project Lebug Object Tool: ‘Window 2 _|ﬁ||5|

D@ E=r- = >x@iscE a2 ?|[ow ! mR c|E
A% %% MR R E| oo

main program signed with cyclic ;I
w4

_CYCLIC woid main program(vold)
i
if | temp act < temp_set |
{
heating = 1;
i
else

i

> heating = 0O;
i -

] _>l_I
Hlfoain program () ;I Expression | Walue
= at e projects’ schulung’ asprogs . pop
=l 18 heating = 0;

(o)

-
4| | 3
Output Debug [c_task1] [Find in Files | «| | »]

[Ln18, Col14 [COM1 [%F152 w210 |RUN %

Fig. 12.8: C Task Debugger

Training ASPROG Page 12.30

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

3.7.4 Debugger: Watch Fenster

This window is opened if the program on the controller gets to a breakpoint. If a
variable in the source window is marked and pulled into the Watch window (Drag &
Drop), then the value of the variable, the array or the structure is shown.

i BLR Automation Studio - [c_taskl.c [C Language]] |- [O] X]
@ File Edit “iew Open Project Debug Object Tool: Window 2 _|ﬁ'|1|

[DEmayee--x&FscHlRmvo2]lasl! atcE
A% AT AR F o

main program signed with cyolic ﬂ

_CYCLIC wvoid main progrem(void)
{
if [temp_act < temp Set |
|

i n
i
else
i
L heating = 0;
} -
4] ¥
Hloain program () ;I E xpression | Walue
= at ciyprojects)schulung’ asprogld. pgp’ termp_act i]
= 15 heating = 0O;
[f=[=l=y]
-
.| | »
Output Debug [c_task] [Find in File: | 4| | ¥

[Ln14, Cal1 [COMT [%P152 ¥210 |RUN >

Fig. 12.9: C Task Debugger Watch Window

Training ASPROG Page 12.31

_

Example

Test the Debugger using an example.

Schulung / Training

Integrale o .
Automation B&R Automation Studio™

3.8 Using Arguments with Complex Data Types

3.8.1 Application Example 1

Note

12. ANSIC

Creating a slave pointer. (Slave pointer => A function that determines the

maximum using a current value).

If a function should return more than one value to the function that made the call, or
if a function should work directly with the memory for the function that made the

call, this cannot take place using the function return().

#include <bur\plc.h> /** B&R Standard files
#include <bur\plctypes.h> /** B&R Standard files

#define TRUE 1
#define FALSE 0

/** TYPE DEFINITION FOR MEASSTRUCTURE

* * /

/** dinit: Used to set max_value to 0.

/** current_value: Current value to be evaluated.
/** max_value: Maximum value of current_value

struct MEASSTRUCTURE {
BOOL init;
INT current_value;
INT max_value;

Y
/** ___
/** VARIABLE DECLARATION
/** ___

/** Variable given to the slave pointer
_LOCAL struct MEASSTRUCTURE fillstatus;

/** The function slavepointer () does not make a copy of the

**/
**/
**/

variable given, instead works directly with the variable for

the function that made the call, therefore a star must be

inserted before
“data” in the function header

void slavepointer (struct MEASSTRUCTURE *data);

Training ASPROG

**/

Page 12.33

Integrale o .
Automation B&R Automation Studio™

Note

12. ANSIC

/** ___ **/
/** INITIALIZATION OF THE TASKS (INIT-SP) *x/
/** ___ **/
_INIT void initup (DINT OS_info)
{

fillstatus.init = 1;

slavepointer (&fillstatus) ;
}
/** ___ **/
/** CYCLIC SECTION OF TASK xx/
/** ___ **/
_CYCLIC wvoid cyclic_func(void)
{

/** Maximum evaluation using slave pointer x*/

slavepointer (&fillstatus) ;
}
/** ___ **/
/** If the current value is > the maximum value,

the current value is set to the maximum value. x*/
/** ___ **/
/** voild slavepointer (struct MEASSTRUCTURE *data) x*/
/** ___ **/
/** The function slavepointer () does not make a copy of the

variable given, instead works directly with the variable for

the function that made the call, therefore a star must be
inserted before “data” in the function header

void slavepointer (struct MEASSTRUCTURE *data)

{
if (data->init == TRUE)
{
data->max_value = 0;
data->init = 0;
} /** end if (data->init .. **/
if (data->current_value > data->max_value)
{
data->max_value = data->current_value;
} /** end if (data->current_value > data->max_value)
/** return without return wvalue **/
}

**/

Detailed information concerning working with pointers can be found in the

respective C literature.

Training ASPROG

**/

Page 12.34

Integrale . .
Automation B&R Automation Studio™

3.8.2 Application Example 2

Determine the length of a strings in a function.

#include <bur\plc.h>
#include <bur\plctypes.h>

/** Constant definition **/

#define TRUE 1
#define FALSE 0

#define END_OF_TEXT 0 /** Strings are zero terminated

/** VARIABLE DECLARATION **/

_LOCAL STRING text[20];
_LOCAL INT length;

/** FUNCTION PROTOTYPES **/

INT string_len (STRING stringl]);

/** INITIALIZATION OF THE TASKS (INIT-SP) **/

_INIT void init (void)
{
text[0]= END_OF_TEXT;

/** CYCLIC SECTION OF TASK **/

_CYCLIC wvoid cyclic_func(void)
{
length = string_len(&(text[0]));

12. ANSIC

**/

/** C strings are zero terminated, therefore the loop searches for

the first 0. Then the length is known.

INT string len(STRING stringl[])

{
INT len = 0;

while (string[len] != END_OF_TEXT)
{

len++;

}

return(len) ;

Training ASPROG

**/

Page 12.35

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

4 USING B&R LIBRARIES

4.1 General Information

Libraries or standard functions are used to efficiently create programs and offer a
simple, complete solution for often required functions.

The following components are needed to use B&R standard functions in a C task:

e Library Header File e.g.: “standard.h”
Contains the variable type declaration and the function type declaration.

e Library Archive File e.g.: ,,standard.a*

Contains the link information for the start address in the library code
of the system files

The files for various libraries are found directly under the library path for the
project. Libraries imported in the project are copied by LibMan directly into this
directory.

Training ASPROG Page 12.36

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

4.2 Example

4.2.1 Inserting the Library in the Project

A standard function from the STANDARD library should be used,
and the following settings must be made in the project.

e Insert the desired library in the Library Manager. Inserting the library
according to the set operating system version copies the necessary files to the
path:

€e.g.: C:\projects\prj_name.pgp\Library

e Inserting the library header files and the archive files

Add C files H

. 5 8l el B e
lstandard o Floppy (] =

= (]
standard. (1 Projects

(1 RIO_2005.pgp
(1 Library

File name: | Add

Files af tpe: |I:|:|mmc:n Files [*.c" hF 507 a) j Cancel |

Fig. 12.12: Insert header file and archive file

IMPORTANT
The library archive file must be placed in the tree structure after the C file that
accesses a corresponding library function.

Maodule M ame | Yersion I Transfer o | Size [bytes]
=z CPU
= Cyclic 1 -[10ms]

0.00 User RaM

L1013 h
c taskl.c

4576

430
3874
ayzconf W22 |Jzer ROM a00
gcloader YW 1.30 Jzer ROM 3896

Fig. 12.13: Complete C task tree

Training ASPROG Page 12.37

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

4.2.2 Inserting the Header File

Only the library header file: “standard.h” has to be included in the C code. The
library archive file “libstandard.a” is only added to the task using Insert: File.

If e.g.: the function TON(..), a turn on delay function from the standard library,
should be used, this results in the following program:

#include <bur\plc.h>
#include <bur\plctypes.h>

#include <standard.h> /** Library Header File x*/
_LOCAL TON_10mstyp ton_para; /** TON parameter variable **/
_GLOBAL BOOL gDhiStart, /*x* start TimerOnDelay xx/

gDoRelay; /x* Output *x*/

_CYCLIC void use_standard_func(void)

{
ton_para.PT = 100; /** set preset-time to lsec. **/
ton_para.IN = gDhiStart;

TON_10ms (&ton_para) ;

gDoRelay = ton_para.Q; /** set output *x*/

Training ASPROG Page 12.38

_

Example

Use the B&R standard library and the function block TOF

Schulung / Training

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

4.2.3 Using C Standard Libraries

This example shows the use of the mathematics library.
Monitor the progress of “x” and “y” with the Tracer.

#include <bur\plc.h>
#include <bur\plctypes.h>
#include “math.h™“

/** ___ **/
/** Constant definition x*/
/** ___ **/

#define TRUE 1
#define FALSE 0

#define SCANTIME 0.01 /** Task class cycle time x*/
/** ___ **/
/** VARIABLE DECLARATION x*/
/** ___ **/

_LOCAL REAL x, vy, freq, t;

/** ___ **/
/** INITIALIZATION OF THE TASK (INIT-SP) *x/
/** ___ **/
_INIT void init (void)

{

freq = 1.0;

}

/** ___ **/
/** CYCLIC SECTION OF THE TASK * %/
/** ___ **/

_CYCLIC wvoid cyclic_func(void)

{
t = t + SCANTIME;
x = sin(M_TWOPI * freqg * t);
vy = cos(M_TwWOPI * freq * t);
}

Training ASPROG Page 12.40

Automation

B&R Automation Studio™ 12. ANSI C

5 COMPILER INFO

5.1 File Types

*.h

C Source Files
Definition of the variables. Implementation of the functions

C Header Files

Prototypes of functions and declaration of variables that should be used for
several C source codes. These files are included in the C source code using the
preprocessor instruction #include.

Assembler source code text.

Object Files:
Compiled source file.

Library Files
Archive made up of several compiled source files. Often simply called library.
Take note that archive files always have to be included at the end of the task.

Training ASPROG Page 12.41

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

5.2 Compile Procedure

‘ source.c H header.h ‘ ‘ asm.s ‘ ‘ object.o ‘ ‘ archive.a

N K

‘ Preprocessor + Compiler ‘

source.s \

‘ Assembler ‘

source.o, asm.o \

‘ Linker ‘
fask.out 4

Project Database ‘4 ‘C Backend + Toskbuilder‘
R

Fig. 12.14: Compile procedure

e Preprocessor
The preprocessor includes the header files in the source code and replaces
the macros. Macros are special instructions for the preprocessor. The
#include instruction is also a preprocessor instruction.

e Parser
The parser is a program element which divides the source code into
individual sections, so that it can be processed by other areas of the
compiler. The parser is also often used to check syntax. That means, the
amount and type of parameters given to the functions.

e Compiler
The compiler is a program that converts the source code to an assembler file
(*.s). At the beginning of the compile procedure, the source code is checked
by the parser.

Training ASPROG Page 12.42

Integrale
Automation B&R Automation Studio™ 12. ANSI C

e Assembler
The assembler creates machine code with linker information from the
assembler code. The Object File (*.0). For most systems, this file must be
processed further e.g. to group several object files or to correctly call
functions contained in libraries. This is done by the Linker.

e Linker
The Linker creates a single code file from the various object files and
libraries, the “task.out” file.

e Backend, Taskbuilder:
The output file from the Linker can be converted to a “task.br” File with AS
database information and some hardware specific modifications. This file
can then be processed by the PCC.

Training ASPROG Page 12.43

Integrale . .]
Automation B&R Automation Studio™ 12. ANSI C

5.3 GNU C Compiler

We use a ported GNU C compiler as C program compiler. GNU originates from the
UNIX world and has proven to be a reliable code generator that is used worldwide.

To be able to use the many possibilities offered by this compiler, documentation is
provided in universal HTML format in the directory
BrAutomation\AS\Gnudoc\index.htm.

Default values for general use are defined in AS. The user only has to make additio-
nal settings if required.

Changes can be made by positioning the marking cursor on
the task and selecting the main menu item Edit: Properties. The properties menu
can also be reached using the right mouse button when the task is selected.

Settings

Maming conventions | Library Manager I I otion I Build & Tranzfer
C Compiler | Ladder Frint 5 ettings I |EC Editor Settings

C lahguage

Additional build options:
|00

Default build options:

|-Wa|| i -rEE000 -mzaft-foat -02 -g -nostartfiles -ans

Include directories:

Add .

Madify ...

=
Delete |

()8 I Cancel

Fig. 12.15: C task settings

Compiler Option:

e -0O0Code optimization off (useful for Debugging)

e -Dmacro Define Macro (conditional code generation)

Training ASPROG Page 12.44

Sautomation B&R Automation Studio™ 13. Seminar Review

SEMINAR REVIEW

I SEMINAR REVIEW ...t 2
2 SEMINAR OVERVIEWcccoiiiiiiiiiiiiiiiinieicccccccecen 3
3 SALES LOCATIONS ..ot 4

Training ASPROG Page 13.1

Schulung / Training

Sautomation B&R Automation Studio™ 13. Seminar Review

1 SEMINAR REVIEW

e B&R Automation Studio

e B&R Automation Runtime

e B&R Automation Target

e B&R Automation Net

e Project Guidelines

e Sequential Function Chart

e AB Automation Basic

e DataHandling

e TPU CodeLinker

e Library Manager Introduction

e ANSIC

Training ASPROG Page 13.2

Gnutomation B&R Automation Studio™ 13. Seminar Review

2SEMINAR OVERVIEW

B&RAUTOMATION SOFTWARE

B&R CONTROL SYSTEMS

POE PO

B&R MOTION SYSTEMS

© @ ACOFOS 1045

B&RPANEL SYSTEMS

s

) : - oy - . 5
Ryl Juuuunnlnﬂ; et
vi_ Do ci—"

Training ASPROG Page 13.3

3SALES LOCATIONS

The most current addresses and product information can be found at:

HTTP://IWWW BR-AUTOMATION.COM

	STNASPROG-E
	SEMINAR START
	1 INTRODUCTION
	2 SEMINAR OVERVIEW
	3 SCHEDULE

	B&R AUTOMATION STUDIO
	1 OVERVIEW
	2 B&R AUTOMATION STUDIO
	2.1 One Tool Many Targets

	3 AS DIRECTORY STRUCTURE
	4 PROJECT DIRECTORY STRUCTURE
	5 AS PROJECT
	5.1 Opening Projects
	5.2 LAD Task
	5.3 C Task
	5.4 Variable Declaration
	5.5 Transferring Projects

	6. PROJECT SETTINGS
	6.1 IEC Editor
	6.2 Ladder Printer Settings
	6.3 C Compiler
	6.4 Build and Transfer
	6.5 Motion
	6.6 Library Manager
	6.7 Naming Conventions

	B&R AUTOMATION RUNTIME
	1 OVERVIEW
	2 AUTOMATION RUNTIME
	3 INDIVIDUAL SYSTEM CONFIGURATIONS
	3.1 Memory Configuration
	3.2 Software Object Configuration
	3.3 System Configuration
	3.4 Communication Configuration
	3.5 Interfaces
	3.6 Timing Configuration
	3.7 Resource Configuration

	4 ERROR LOGBOOK
	5 ONLINE INFORMATION
	5.1 System Information
	5.2 CPU Memory Information
	5.3 Real-time Clock

	6 I/O HANDLING AND TIMING
	6.1 I/O Image Handling

	7 SYSTEM STRENGTHS
	7.1 Strengths of the B&R Multitasking System
	7.2 Strengths of the B&R I/O System

	B&R AUTOMATION TARGETS
	1 OVERVIEW
	2 B&R AUTOMATION TARGET
	3 B&R AUTOMATION TARGET 2003
	3.1 Main Unit
	3.2 Expansion
	3.3 CAN I/O Projects

	4 B&R AUTOMATION TARGET 2005
	4.1 Main Unit
	4.2 Expansion
	4.3 RIO Projects

	5 B&R AUTOMATION TARGET 2010
	5.1 Main Unit
	5.2 Expansion

	6 B&R AUTOMATION TARGET LOGIC SCANNER
	6.1 Main Unit
	6.2 Expansion

	7 B&R AUTOMATION TARGET IPC2XXX
	7.1 Main Unit
	7.2 Expansion

	8 B&R AUTOMATION TARGET IPC5XXX
	8.1 Main Unit
	8.2 Expansion

	9 B&R2000 OVERVIEW

	B&R AUTOMATION NET
	1 OVERVIEW
	2 B&R AUTOMATION NET
	3 COMMUNICATION PRINCIPLES
	4 ACCESS TO B&R AUTOMATION NET
	4.1 B&R Automation Net - PVI
	4.2 B&R Automation Net - Routing
	4.3 B&R Automation Net - INA Client FBKs

	PROJECT GUIDELINES I
	1 OVERVIEW
	2 PROJECT CREATION
	3 PROGRAMMING CONVENTIONS
	3.1 Identifier
	3.2 Data Types
	3.3 Directory Structure
	3.4 Software Module Names
	3.5 Task Names
	3.6 Data Module Names
	3.7 Variable Names
	3.8 Constant Names
	3.9 Alias Process Variables
	3.10 Assigning Revision Numbers

	SEQUENTIAL FUNCTION CHART
	1 OVERVIEW
	2 SFC SYNTAX
	2.1 Steps
	2.2 Actions
	2.3 Transitions
	2.4 Jumps
	2.5 Branches
	2.6 IEC Steps

	3 PLANNING WITH SFC
	3.1 Planning on Paper
	3.2 SFC Tools
	3.3 SFC Application

	AUTOMATION BASIC
	1 OVERVIEW
	2 SYNTAX
	2.1 Command Groups
	2.2 Operator Priorities
	2.3 Logical Links
	2.4 Arithmetic Operations
	2.5 Data Type Conversion
	2.6 Logical Comparison Expressions
	2.7 Decisions
	2.8 Case Statements
	2.9 Loops
	2.10 Select Statements
	2.11 Working with Function Blocks

	DATA HANDLING
	1. OVERVIEW
	2. PROCESS VARIABLES
	2.1 General Information
	2.2 Data
	2.3 Basic Data Types
	2.4 User Data Types
	2.5 Function Block Data Types
	2.6 Dynamic Process Variables

	3. DATA MODULES
	3.1 General Information
	3.2 What is a data module
	3.3 What advantages does a data module offer
	3.4 Creating a Data Module in AutomationStudio
	3.5 Reading a Data Module from the Application
	3.6 Creating and Writing to a Data Module from the Application
	3.7 Autonomous Data Module Memory

	4. MEMORY MANAGEMENT
	4.1 General Information
	4.2 Memory Access
	4.3 Location
	4.4 Memory Organization

	TIMING PROCESSING UNIT
	1 OVERVIEW
	2 TIMING PROCESSING UNIT
	2.1 What is a Timing Processing Unit
	2.2 Block Diagram of a Processor with TPU
	2.3 Functions

	3 TPU MODULES
	3.1 B&R AutomationTarget 2003
	3.2 B&R AutomationTarget 2005

	4 LTX FUNCTIONS
	4.1 Configuration of the Hardware
	4.2 Use of LTX Functions
	4.3 Example Gate Measurement

	LIBRARY MANAGER
	1 OVERVIEW
	1.1 Functions

	2 LIBRARY MANAGER
	2.1 General Information
	2.2 Term Definitions
	2.3 Library Guidelines
	2.4 Global Settings

	3 B&R LIBRARIES
	3.1 Overview of Standard Libraries
	3.2 Online Help
	3.3 Insert Library

	4 USER LIBRARIES
	4.1 Creating a Library
	4.2 Creating an IEC Function Block
	4.3 Function Block Properties
	4.4 FBK Interface
	4.5 Source Code for the Function Block
	4.6 Creating Online Help
	4.7 Creating a C Library
	4.8 Reusing Libraries

	5 PG2000 LIBRARIES
	5.1 PG2000 Porting Guide

	ANSI C
	1 OVERVIEW
	2 ANSI C
	2.1 Development History
	2.2 Definition of Terms
	2.3 Command Groups

	3 STRUCTURE OF C PROGRAMS
	3.1 B&R Expansions
	3.2 Creating a C Task
	3.3 Variable Declaration
	3.4 Data Types
	3.5 Line Coverage
	3.6 Functions
	3.7 Debugger
	3.8 Using Arguments with Complex Data Types

	4 USING B&R LIBRARIES
	4.1 General Information
	4.2 Example

	5 COMPILER INFO
	5.1 File Types
	5.2 Compile Procedure
	5.3 GNU C Compiler

	SEMINAR REVIEW
	1 SEMINAR REVIEW
	2 SEMINAR OVERVIEW
	3 SALES LOCATIONS

